962 resultados para Relative entropy of entanglement
Resumo:
A multiproxy record including benthic foraminifera, diatoms and XRF data of a marine sediment core from a SW Greenland fjord provides a detailed reconstruction of the oceanographic and climatic variations of the region during the last 4400 cal. years. The lower part of our record represents the final termination of the Holocene Thermal Maximum. After the onset of the 'Neoglaciation' at approximately 3.2 ka cal. BP, the fjord system was subject to a number of marked hydrographical changes that were closely linked to the general climatic and oceanographic development of the Labrador Sea and the North Atlantic region. Our data show that increased advection of Atlantic water (Irminger Sea Water) from the West Greenland Current into the Labrador Sea was a typical feature of Northeast Atlantic cooling episodes such as the 'Little Ice Age' and the 'European Dark Ages', while the advection of Irminger Sea Water decreased significantly during warm episodes such as the 'Mediaeval Warm Period' and the 'Roman Warm Period'.Whereas the 'Mediaeval Warm Period' was characterized by relatively cool climate as suggested by low meltwater production, the preceding 'Dark Ages' display higher meltwater runoff and consequently warmer climate. When compared with European climate, these regional climate anomalies indicate persisting patterns of advection of colder, respectively warmer air masses in the study region during these periods and thus a long-term seesaw climate pattern between West Greenland and Europe.
Resumo:
Carbon isotopic composition of predominantly marine kerogen in latest Oligocene mudstones of the Peru Margin ODP 682A Hole shows an about 3.5? increase with decreasing age. Py-GC and elemental (C=N ratio) analysis of the kerogen plus sulphur isotopic study together with earlier knowledge on geological setting and organic geochemistry results in a better understanding of depositionary environment and allows to separation of the influence of concentration of water dissolved carbon dioxide (ce) on kerogen delta13C from that of other factors (bacterial degradation, sea surface temperature, DIC delta13C, productivity, and admixture of land plant OM). Based on this analysis, the major part of the kerogen shift is considered as a result of the latest Oligocene decrease of marine photosynthetic carbon isotopic fractionation in the Peru Margin photic zone, which in turn possibly reflects a simultaneous drop in atmospheric CO2 level. Uncertainties in the evaluation of the factors affecting the marine photosynthetic carbon isotopic fractionation and the extent of ocean-atmosphere disequilibrium do not permit calculation of the decrease of the atmospheric CO2.
Resumo:
Determinations were made of contents of carbon, lipids, nitrogen and, in some material, protein, carbohydrates, elementary composition of lipids and their spectral composition in total plankton samples from different depths (from the surface to 3000 m) and in several species of macroplanktonic deep-water crustaceans (decapods and mysids) living at different depths. Content of organic carbon and lipids in total plankton is high (40 to 60 and 35 to 70% of dry weight, respectively) and it does not change significantly with increasing depth. Deep-water macroplanktonic crustaceans have extremely high content of organic carbon and lipids, but there are no significant differences in this respect between species that live in different layers of the deep-water zone. Elementary composition of lipids indicates that they are highly saturated, with a marked predominance of unsaponifiable fraction, about 20% of which consists of methane hydrocarbons.
Resumo:
This study aims to contribute to a more detailed knowledge of the biogeography of coccolithophores in the Equatorial and Southeastern Pacific Ocean. Census data of fossil coccoliths are presented in a suite of core-top sediment samples from 15°N to 50.6°S and from 71°W to 93°W. Following standard preparation of smear slides, a total of 19 taxa are recognized in light microscopy and their relative abundances are determined for 134 surface sediment samples. Considering the multivariate character of oceanic conditions and their effects on phytoplankton, a Factor Analysis was performed and three factors were retained. Factor 1, dominated by Florisphaera profunda and Gephyrocapsa oceanica, includes samples located under warm water masses and indicates the occurrence of calcite dissolution in the water column in the area offshore Chile. Factor 2 is related to cold, low-salinity surface-water masses from the Chilean upwelling, and is dominated by Emiliania huxleyi, Gephyrocapsa sp. < 3 µm, Coccolithus pelagicus and Gephyrocapsa muellerae. Factor 3 is linked to more saline, coastal upwelling areas where Calcidiscus leptoporus and Helicosphaera carteri are the dominant species.
(Table 3) Relative abundances of palynoclasts, palynomorphs and microplankton in ODP Leg 112 samples