871 resultados para Regulation of media
Resumo:
Spermatogonial stem cells (SSCs) either self-renew or differentiate into spermatogonia that further develop into spermatozoa. Self-renewal occurs when residing in a specific micro-environment (niche) while displacement from the niche would tip the signalling balance towards differentiation. Considering the cystic type of spermatogenesis in fish, the SSC candidates are single type A undifferentiated (A(und)) spermatogonia, enveloped by mostly one niche-forming Sertoli cell. When going through a self-renewal cell cycle, the resulting new single type Aund spermatogonium would have to recruit another Sertoli cell to expand the niche space, while a differentiating germ cell cyle would result in a pair of spermatogonia that remain in contact with their cyst-forming Sertoli cells. In zebrafish, thyroid hormone stimulates the proliferation of Sertoli cells and of type Aund spermatogonia, involving Igf3, a new member of the Igf family. In cystic spermatogenesis, type Aund spermatogonia usually do not leave the niche, so that supposedly the signalling in the niche changes when switching from self-renewal to differentiation. and rzAmh inhibited differentiation of type A(und) spermatogonia as well as Fsh-stimulated steroidogenesis. Thus, for Fsh to efficiently stimulate testis functions, Amh bioactivity should be dampened. We also discovered that Fsh increased Sertoli cell Igf3 gene and protein expression; rzIgf3 stimulated spermatogonial proliferation and Fsh-stimulated spermatogenesis was significantly impaired by inhibiting Igf receptor signaling. We propose that in zebrafish, Fsh is the major regulator of testis functions and, supported by other endocrine systems (e.g. thyroid hormone), regulates Leydig cell steroidogenesis as well as Sertoli cell number and growth factor production to promote spermatogenesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To maintain euglycemia in healthy organisms, hepatic glucose production is increased during fasting and decreased during the postprandial period. This whole process is supported by insulin levels. These responses are associated with the insulin signaling pathway and the reduction in the activity of key gluconeogenic enzymes, resulting in a decrease of hepatic glucose production. On the other hand, defects in the liver insulin signaling pathway might promote inadequate suppression of gluconeogenesis, leading to hyperglycemia during fasting and after meals. The hepatocyte nuclear factor 4, the transcription cofactor PGC1-α, and the transcription factor Foxo1 have fundamental roles in regulating gluconeogenesis. The loss of insulin action is associated with the production of pro-inflammatory biomolecules in obesity conditions. Among the molecular mechanisms involved, we emphasize in this review the participation of TRB3 protein (a mammalian homolog of Drosophila tribbles), which is able to inhibit Akt activity and, thereby, maintain Foxo1 activity in the nucleus of hepatocytes, inducing hyperglycemia. In contrast, physical exercise has been shown as an important tool to reduce insulin resistance in the liver by reducing the inflammatory process, including the inhibition of TRB3 and, therefore, suppressing gluconeogenesis. The understanding of these new mechanisms by which physical exercise regulates glucose homeostasis has critical importance for the understanding and prevention of diabetes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We have previously proposed a role of hydration in the allosteric control of hemoglobin based on the effect of varying concentrations of polyols and polyethers on the human hemoglobin oxygen affinity and on the solution water activity (Colombo, M. F., Rau, D. C., and Parsegian, V. A. (1992) Science 256, 655-659). Here, the original analyses are extended to test the possibility of concomitant solute and water allosteric binding and by introducing the bulk dielectric constant as a variable in our experiments. We present data which indicate that glycine and glucose influence HbA oxygen affinity to the same extent, despite the fact that glycine increases and glucose decreases the bulk dielectric constant of the solution. Furthermore, we derive an equation linking changes in oxygen affinity to changes in differential solute and water binding to test critically the possibility of neutral solute heterotropic binding. Applied to the data, these analyses support our original interpretation that neutral solutes act indirectly on the regulation of allosteric behavior of hemoglobin by varying the chemical potential of water in solution. This leads to a displacement of the equilibrium between Hb conformational states in proportion to their differential hydration.
Resumo:
Freshwater copepods were sampled in the La Plata River basin to identify the processes that affect beta diversity and to determine the main factors influencing their geographical distribution and patterns of endemism. Beta diversity patterns exhibited strong dissimilarity between locations; the turnover process was predominant and indicated a replacement of species along the basin. Redundancy analysis indicated the presence of two large sets of species separated geographically by a boundary zone, with several associated variables. Northern species were associated with water transparency and temperature, mean air temperature, mean air temperature during winter and minimum air temperature of coldest month, indicating that these species are not tolerant to low temperatures and are abundant in reservoirs that are common in the upper stretch of the Paraná River basin. Southern species were related with amplitude of air temperature, turbidity, total phosphorus and total suspended matter, indicating that these species are polythermic and have adapted to live in river stretches. From 20 environmental variables analyzed in our study, partial least squares analysis indicated four variables with increased retention of effects on copepod abundance: air temperature, minimum temperature of coldest month, turbidity and transparency. Because almost all of the species found in this study occurred across a wide range of habitat types, the cause of the separation between river and reservoir species could be considered to be more anthropogenic than natural, and it primarily affected species abundance. For certain members of the northern group of copepod species, distribution was dependent on high temperatures, whereas the distribution of the southern group indicated that the species were polythermic.
Resumo:
During DNA replication the helicase (DnaB) recruits the primase (DnaG) in the replisome to initiate the polymerization of new DNA strands. DnaB is attached to the τ subunit of the clamp-loader that loads the β clamp and interconnects the core polymerases on the leading and lagging strands. The τ–DnaB−DnaG ternary complex is at the heart of the replisome and its function is likely to be modulated by a complex network of allosteric interactions. Using a stable ternary complex comprising the primase and helicase from Geobacillus stearothermophilus and the τ subunit of the clamp-loader from Bacillus subtilis we show that changes in the DnaB–τ interaction can stimulate allosterically primer synthesis by DnaG in vitro. The A550V τ mutant stimulates the primase activity more efficiently than the native protein. Truncation of the last 18 C-terminal residues of τ elicits a DnaG-stimulatory effect in vitro that appears to be suppressed in the native τ protein. Thus changes in the τ–DnaB interaction allosterically affect primer synthesis. Although these C-terminal residues of τ are not involved directly in the interaction with DnaB, they may act as a functional gateway for regulation of primer synthesis by τ-interacting components of the replisome through the τ–DnaB−DnaG pathway.
Resumo:
The disturbed cytokinechemokine network could play an important role in the onset of diseases with inflammatory processes such as chronic idiopathic urticaria (CIU). Our main objectives were to evaluate the relation between proinflammatory chemokine serum levels from CIU patients and their response to autologous skin test (ASST) and basophil histamine release (BHR). We also aimed to assess the chemokine secretion by peripheral blood mononuclear cells (PBMC) upon polyclonal stimulus and to evaluate chemokine CC ligand 2/C-X-C chemokine 8 (CCL2/CXCL8) and Toll-like receptor-4 (TLR-4) expression in monocytes. We observed significantly higher serum levels of the CXCL8, CXCL9, CXCL10 and CCL2 in CIU patients compared to the healthy group, regardless of the BHR or ASST response. The basal secretion of CCL2 by PBMC or induced by Staphylococcus aureus enterotoxin A (SEA) was higher in CIU patients than in the control group, as well as for CXCL8 and CCL5 secretions upon phytohaemagglutinin stimulation. Also, up-regulation of CCL2 and CXCL8 mRNA expression was found in monocytes of patients upon SEA stimulation. The findings showed a high responsiveness of monocytes through CCL2/CXCL8 expression, contributing to the creation of a proinflammatory environment in CIU.
Resumo:
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.
Resumo:
The transition from gestation to lactation is characterized by a robust adaptation of maternal pancreatic beta-cells. Consistent with the loss of beta-cell mass, glucose-induced insulin secretion is down-regulated in the islets of early lactating dams. Extensive experimental evidence has demonstrated that the surge of prolactin is responsible for the morphofunctional remodeling of the maternal endocrine pancreas during pregnancy, but the precise molecular mechanisms by which this phenotype is rapidly reversed after delivery are not completely understood. This study investigated whether glucocorticoid-regulated expression of Rasd1/Dexras, a small inhibitoryGprotein, is involved in this physiological plasticity. Immunofluorescent staining demonstrated that Rasd1 is localized within pancreatic beta-cells. Rasd1 expression in insulin-secreting cells was increased by dexamethasone and decreased by prolactin. In vivo data confirmed that Rasd1 expression is decreased in islets from pregnant rats and increased in islets from lactating mothers. Knockdown of Rasd1 abolished the inhibitory effects of dexamethasone on insulin secretion and the protein kinase A, protein kinase C, and ERK1/2 pathways. Chromatin immunoprecipitation experiments revealed that glucocorticoid receptor (GR) and signal transducer and activator of transcription 5b (STAT5b) cooperatively mediate glucocorticoid-induced Rasd1 expression in islets. Prolactin inhibited the stimulatory effect of GR/STAT5b complex on Rasd1 transcription. Overall, our data indicate that the stimulation of Rasd1 expression by glucocorticoid at the end of pregnancy reverses the increased insulin secretion that occurs during pregnancy. Prolactin negatively regulates this pathway by inhibiting GR/STAT5b transcriptional activity on the Rasd1 gene. (Endocrinology 153: 3668-3678, 2012)
Resumo:
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Resumo:
Central chemoreception is the mechanism by which the brain regulates breathing in response to changes in tissue CO2/H+. Abrainstemregion called the retrotrapezoid nucleus (RTN) contains a population of CO2/H+-sensitive neurons that appears to function as an important chemoreceptor. Evidence also indicates that CO2-evoked ATP release from RTN astrocytes modulates activity of CO2/H+-sensitive neurons; however, the extent to which purinergic signalling contributes to chemoreception by RTN neurons is not clear and the mechanism(s) underlying CO2/H+-evoked ATP release is not fully elucidated. The goals of this study are to determine the extent to which ATP contributes to RTN chemoreception both in vivo and in vitro, andwhether purinergic drive to chemoreceptors relies on extracellularCa(2+) or gap junction hemichannels. We also examine the possible contribution of P2Y1 receptors expressed in theRTNto the purinergic drive to breathe. We showthat purinergic signalling contributes, in part, to the CO2/H+ sensitivity of RTN neurons. In vivo, phrenic nerve recordings of respiratory activity in adult rats show that bilateral injections of pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS, a P2 receptor blocker) decreased the ventilatory response to CO2 by 30%. In vitro, loose-patch recordings from RTN neurons show that P2 receptor blockers decreased responsiveness to both 10% and 15% CO2 also by 30%. In the slice, the contribution of purinergic signalling to RTN chemoreception did not increase with temperature (22-35 degrees C) and was retained in low extracellular Ca2+ medium. Conversely, the gap junction blockers carbenoxolone and cobalt decreased neuronal CO2/H+ sensitivity by an amount similar to P2 receptor antagonists. Inhibition of the P2Y1 receptor in the RTN had no effect on CO2 responsivness in vitro or in vivo; thus, the identity of P2 receptors underlying the purinergic component of RTN chemoreception remains unknown. These results support the possibility that CO2/H+-evoked ATP release is mediated by a mechanism involving gap junction hemichannels.
Resumo:
A wealth of evidence indicates that the dorsal raphe nucleus (DR) is not a homogenous structure, but an aggregate of distinctive populations of neurons that may differ anatomically, neurochemically and functionally. Other findings suggest that serotonergic neurons within the mid-caudal and caudal part of the DR are involved in anxiety processing while those within the lateral wings (IwDR) and ventrolateral periaqueductal gray (vIPAG) are responsive to panic-evoking stimuli/situations. However, no study to date has directly compared the activity of 5-HT and non-5HT neurons within different subnuclei of the DR following the expression of anxiety- and panic-related defensive responses. In the present investigation, the number of doubly immunostained cells for Fos protein and tryptophan hydroxylase, a marker of serotonergic neurons, was assessed within the rat DR, median raphe nucleus (MRN) and PAG following inhibitory avoidance and escape performance in the elevated T-maze, behaviors associated with anxiety and panic, respectively. Inhibitory avoidance, but not escape, significantly increased the number of Fos-expressing serotonergic neurons within the mid-caudal part of the dorsal subnucleus, caudal and interfascicular subnuclei of the DR and in the MRN. Escape, on the other hand, caused a marked increase in the activity of non-5HT cells within the IwDR, vIPAG, dorsolateral and dorsomedial columns of the PAG. These results strongly corroborate the view that different subsets of neurons in the DR are activated by anxiety- and panic-relevant stimuli/situations, with important implications for the understanding of the pathophysiology of generalized anxiety and panic disorders. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.