882 resultados para Regularization scheme
Resumo:
In a simplest case we employ dimensional regularization method in order to evaluate the contribution of two pion exchanges to the NN interaction. The method allows one to treat the infinities of scattering amplitude in a way consistent with the symmetries of the theory.
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We study the regularization ambiguities in an exact renormalized (1 + 1)-dimensional field theory. We show a relation between the regularization ambiguities and the coupling parameters of the theory as well as their role in the implementation of a local gauge symmetry at quantum level.
Resumo:
In this paper we argue that there is no ambiguity between the Pauli-Villars and other methods of regularization in (2+1)-dimensional quantum electrodynamics with respect to dynamical mass generation, provided we properly choose the couplings for the regulators.
Resumo:
Singular perturbations problems in dimension three which are approximations of discontinuous vector fields are studied in this paper. The main result states that the regularization process developed by Sotomayor and Teixeira produces a singular problem for which the discontinuous set is a center manifold. Moreover, the definition of' sliding vector field coincides with the reduced problem of the corresponding singular problem for a class of vector fields.
Resumo:
Monte Carlo simulations are used to assess the adequacy of the Tanford-Kirkwood prescription for electrostatic interactions in macromolecules. Within a continuum dielectric framework, the approach accurately describes salt screening of electrostatic interactions for moderately charged systems consistent with common proteins at physiological conditions. The limitations of the Debye-Huckel theory, which forms the statistical mechanical basis for the Tanford-Kirkwood result, become apparent for highly charged systems. It is shown, both by an analysis of the Debye-Huckel theory and by numerical simulations, that the difference in dielectric permittivity between macromolecule and surrounding solvent does not play a significant role for salt effects if the macromolecule is highly charged. By comparison to experimental data, the continuum dielectric model (combined with either an approximate effective Hamiltonian as in the Tanford-Kirkwood treatment or with exact Monte Carlo simulations) satisfactorily predicts the effects of charge mutation on metal ion binding constants, but only if the macromolecule and solvent are assigned the same or similar permittivities.
Resumo:
Measurement-based quantum computation is an efficient model to perform universal computation. Nevertheless, theoretical questions have been raised, mainly with respect to realistic noise conditions. In order to shed some light on this issue, we evaluate the exact dynamics of some single-qubit-gate fidelities using the measurement-based quantum computation scheme when the qubits which are used as a resource interact with a common dephasing environment. We report a necessary condition for the fidelity dynamics of a general pure N-qubit state, interacting with this type of error channel, to present an oscillatory behavior, and we show that for the initial canonical cluster state, the fidelity oscillates as a function of time. This state fidelity oscillatory behavior brings significant variations to the values of the computational results of a generic gate acting on that state depending on the instants we choose to apply our set of projective measurements. As we shall see, considering some specific gates that are frequently found in the literature, the fast application of the set of projective measurements does not necessarily imply high gate fidelity, and likewise the slow application thereof does not necessarily imply low gate fidelity. Our condition for the occurrence of the fidelity oscillatory behavior shows that the oscillation presented by the cluster state is due exclusively to its initial geometry. Other states that can be used as resources for measurement-based quantum computation can present the same initial geometrical condition. Therefore, it is very important for the present scheme to know when the fidelity of a particular resource state will oscillate in time and, if this is the case, what are the best times to perform the measurements.
Resumo:
In this work we consider the two-point Green's functions in (1 + 1)-dimensional quantum electrodynamics and show that the correct implementation of analytic regularization gives a gauge invariant result for the vacuum polarization amplitude and the correct coefficient for the axial anomaly.
Resumo:
The negative-dimensional integration method (NDIM) is revealing itself as a very useful technique for computing massless and/or massive Feynman integrals, covariant and noncovanant alike. Up until now however, the illustrative calculations done using such method have been mostly covariant scalar integrals/without numerator factors. We show here how those integrals with tensorial structures also can be handled straightforwardly and easily. However, contrary to the absence of significant features in the usual approach, here the NDIM also allows us to come across surprising unsuspected bonuses. Toward this end, we present two alternative ways of working out the integrals and illustrate them by taking the easiest Feynman integrals in this category that emerge in the computation of a standard one-loop self-energy diagram. One of the novel and heretofore unsuspected bonuses is that there are degeneracies in the way one can express the final result for the referred Feynman integral.
Resumo:
The classification of the regularization ambiguity of a 2D fermionic determinant in three different classes according to the number of second-class constraints, including the new Faddeevian regularization, is examined and extended. We find a new and important result that the Faddeevian class, with three second-class constraints, possesses a free continuous one parameter family of elements. The criterion of unitarity restricts the parameter to the same range found earlier by Jackiw and Rajaraman for the two-constraint class. We studied the restriction imposed by the interference of right-left modes of the chiral Schwinger model (χQED2) using Stone's soldering formalism. The interference effects between right and left movers, producing the massive vectorial photon, are shown to constrain the regularization parameter to belong to the four-constraint class which is the only nonambiguous class with a unique regularization parameter. ©1999 The American Physical Society.
Resumo:
A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MCP). Monotonicity of the VIP implies that the MCP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP. Copyright © 2000 by Marcel Dekker, Inc.
Resumo:
An active leakage-injection scheme (ALIS) for low-voltage (LV) high-density (HD) SRAMs is presented. By means of a feedback loop comprising a servo-amplifier and a common-drain MOSFET, a current matching the respective bit-line leakage is injected onto the line during precharge and sensing, preventing the respective capacitances from erroneous discharges. The technique is able to handle leakages up to hundreds of μA at high operating temperatures. Since no additional timing is required, read-out operations are performed at no speed penalty. A simplified 256×1bit array was designed in accordance with a 0.35 CMOS process and 1.2V-supply. A range of PSPICE simulation attests the efficacy of ALIS. With an extra power consumption of 242 μW, a 200 μA-leakage @125°C, corresponding to 13.6 times the cell current, is compensated.
Resumo:
Here the results for CD4+T cells count and the viral load obtained from HIV sero-positive patients are compared with results from numerical simulations by computer. Also, the standard scheme of administration of drugs anti HIV (HAART schemes) which uses constant doses is compared with an alternative sub-optimal teatment scheme which uses variable drug dosage according to the evolution of a quantitative measure of the side effects. The quantitative analysis done here shows that it is possible to obtain, using the alternative scheme, the same performance of actual data but using variable dosage and having fewer side effects. Optimal control theory is used to solve and also to provide a prognosis related to the strategies for control of viraemia.
Resumo:
We discuss conservation laws for gravity theories invariant under general coordinate and local Lorentz transformations. We demonstrate the possibility to formulate these conservation laws in many covariant and noncovariant(ly looking) ways. An interesting mathematical fact underlies such a diversity: there is a certain ambiguity in a definition of the (Lorentz-) covariant generalization of the usual Lie derivative. Using this freedom, we develop a general approach to the construction of invariant conserved currents generated by an arbitrary vector field on the spacetime. This is done in any dimension, for any Lagrangian of the gravitational field and of a (minimally or nonminimally) coupled matter field. A development of the regularization via relocalization scheme is used to obtain finite conserved quantities for asymptotically nonflat solutions. We illustrate how our formalism works by some explicit examples. © 2006 The American Physical Society.