793 resultados para Regional population forecasting, service provision, box-Jenkins model
Resumo:
The International Nusantara Stratification and Transport (INSTANT) program measured currents through multiple Indonesian Seas passages simultaneously over a three-year period (from January 2004 to December 2006). The Indonesian Seas region has presented numerous challenges for numerical modelers - the Indonesian Throughflow (ITF) must pass over shallow sills, into deep basins, and through narrow constrictions on its way from the Pacific to the Indian Ocean. As an important region in the global climate puzzle, a number of models have been used to try and best simulate this throughflow. In an attempt to validate our model, we present a comparison between the transports calculated from our model and those calculated from the INSTANT in situ measurements at five passages within the Indonesian Seas (Labani Channel, Lifamatola Passage, Lombok Strait, Ornbai Strait, and Timor Passage). Our Princeton Ocean Model (POM) based regional Indonesian Seas model was originally developed to analyze the influence of bottom topography on the temperature and salinity distributions in the Indonesian seas region, to disclose the path of the South Pacific Water from the continuation of the New Guinea Coastal Current entering the region of interest up to the Lifamatola Passage, and to assess the role of the pressure head in driving the ITF and in determining its total transport. Previous studies found that this model reasonably represents the general long-term flow (seasons) through this region. The INSTANT transports were compared to the results of this regional model over multiple timescales. Overall trends are somewhat represented but changes on timescales shorter than seasonal (three months) and longer than annual were not considered in our model. Normal velocities through each passage during every season are plotted. Daily volume transports and transport-weighted temperature and salinity are plotted and seasonal averages are tabulated.
Resumo:
Assessment of marine downscaling of global model simulations to the regional scale is a prerequisite for understanding ocean feedback to the atmosphere in regional climate downscaling. Major difficulties arise from the coarse grid resolution of global models, which cannot provide sufficiently accurate boundary values for the regional model. In this study, we first setup a stretched global model (MPIOM) to focus on the North Sea by shifting poles. Second, a regional model (HAMSOM) was performed with higher resolution, while the open boundary values were provided by the stretched global model. In general, the sea surface temperatures (SSTs) in the two experiments are similar. Major SST differences are found in coastal regions (root mean square difference of SST is reaching up to 2°C). The higher sea surface salinity in coastal regions in the global model indicates the general limitation of this global model and its configuration (surface layer thickness is 16 m). By comparison, the advantage of the absence of open lateral boundaries in the global model can be demonstrated, in particular for the transition region between the North Sea and Baltic Sea. On long timescales, the North Atlantic Current (NAC) inflow through the northern boundary correlates well between both model simulations (R~0.9). After downscaling with HAMSOM, the NAC inflow through the northern boundary decreases by ~10%, but the circulation in the Skagerrak is stronger in HAMSOM. The circulation patterns of both models are similar in the northern North Sea. The comparison suggests that the stretched global model system is a suitable tool for long-term free climate model simulations, and the only limitations occur in coastal regions. Regarding the regional studies focusing on the coastal zone, nested regional model can be a helpful alternative.
Resumo:
Background: Cancer cachexia is a complex metabolic syndrome characterised by severe and progressive weight loss which is predominantly muscle mass. It is a devastating and distressing complication of advanced cancer with profound bio-psycho-social implications for patients and their families. At present there is no curative treatment for cachexiain advanced cancer therefore the most important healthcare response entails the minimisation of the psycho-social distress associated with it. However the literature suggests healthcare professionals’are missing opportunities to intervene and respond to the multi-dimensional needs of this population.
Objective:The objective of this study was to explore healthcare professionals’ response to cachexia in advanced cancer.
Methods: An interpretative qualitative approach was adopted in this study. A purposive sample of doctors, nurses, specialist nurses and dieticians were recruited from a regional cancer centre between November 2009 and November 2010. Data was collection was twofold: two multi-professional focus groups were conducted first to uncover the main themes and issues in cachexia management. This data then informed the interview schedule for the following 25 individual semi-structured interviews.
Results: Preliminary data analysis of the semi-structured interviews revealed distinct differences between disciplines in their perceptions of cancer cachexia which influenced their response to it in clinical practice. The commonality between disciplines, with the exception of palliative care, was a reliance on the biomedical approach to cancer cachexia management.
Discussion and Conclusions: Cancer cachexia is a complex and challenging syndrome which needs to be addressed from a holistic model of care to reflect the multi-dimensional needs of this patient group. The perspectives of those involved in care delivery is required in order to inform the development of interventions aimed at minimising the distress associated with this devastating syndrome.
Resumo:
It is widely documented that nurses experience work-related stress [Quine, L., 1998. Effects of stress in an NHS trust: a study. Nursing Standard 13 (3), 36-41; Charnley, E., 1999. Occupational stress in the newly qualified staff nurse. Nursing Standard 13 (29), 32-37; McGrath, A., Reid, N., Boore, J., 2003. Occupational stress in nursing. International Journal of Nursing Studies 40, 555-565; McVicar, A., 2003. Workplace stress in nursing: a literature review. Journal of Advanced Nursing 44 (6), 633-642; Bruneau, B., Ellison, G., 2004. Palliative care stress in a UK community hospital: evaluation of a stress-reduction programme. International Journal of Palliative Nursing 10 (6), 296-304; Jenkins, R., Elliott, P., 2004. Stressors, burnout and social support: nurses in acute mental health settings. Journal of Advanced Nursing 48 (6), 622-631], with cancer nursing being identified as a particularly stressful occupation [Hinds, P.S., Sanders, C.B., Srivastava, D.K., Hickey, S., Jayawardene, D., Milligan, M., Olsen, M.S., Puckett, P., Quargnenti, A., Randall, E.A., Tyc, V., 1998. Testing the stress-response sequence model in paediatric oncology nursing. Journal of Advanced Nursing 28 (5), 1146-1157; Barnard, D., Street, A., Love, A.W., 2006. Relationships between stressors, work supports and burnout among cancer nurses. Cancer Nursing 29 (4), 338-345]. Terminologies used to capture this stress are burnout [Pines, A.M., and Aronson, E., 1988. Career Burnout: Causes and Cures. Free Press, New York], compassion stress [Figley, C.R., 1995. Compassion Fatigue. Brunner/Mazel, New York], emotional contagion [Miller, K.I., Stiff, J.B., Ellis, B.H., 1988. Communication and empathy as precursors to burnout among human service workers. Communication Monographs 55 (9), 336-341] or simply the cost of caring (Figley, 1995). However, in the mental health field such as psychology and counselling, there is terminology used to captivate this impact, vicarious traumatisation. Vicarious traumatisation is a process through which the therapist's inner experience is negatively transformed through empathic engagement with client's traumatic material [Pearlman, L.A., Saakvitne, K.W., 1995a. Treating therapists with vicarious traumatization and secondary traumatic stress disorders. In: Figley, C.R. (Ed.), Compassion Fatigue: Coping with Secondary Traumatic Stress Disorder in Those Who Treat the Traumatized. Brunner/Mazel, New York, pp. 150-177]. Trauma not only affects individuals who are primarily present, but also those with whom they discuss their experience. If an individual has been traumatised as a result of a cancer diagnosis and shares this impact with oncology nurses, there could be a risk of vicarious traumatisation in this population. However, although Thompson [2003. Vicarious traumatisation: do we adequately support traumatised staff? The Journal of Cognitive Rehabilitation 24-25] suggests that vicarious traumatisation is a broad term used for workers from any profession, it has not yet been empirically determined if oncology nurses experience vicarious traumatisation. This purpose of this paper is to introduce the concept of vicarious traumatisation and argue that it should be explored in oncology nursing. The review will highlight that empirical research in vicarious traumatisation is largely limited to the mental health professions, with a strong recommendation for the need to empirically determine whether this concept exists in oncology nursing.
Resumo:
To cope with the rapid growth of multimedia applications that requires dynamic levels of quality of service (QoS), cross-layer (CL) design, where multiple protocol layers are jointly combined, has been considered to provide diverse QoS provisions for mobile multimedia networks. However, there is a lack of a general mathematical framework to model such CL scheme in wireless networks with different types of multimedia classes. In this paper, to overcome this shortcoming, we therefore propose a novel CL design for integrated real-time/non-real-time traffic with strict preemptive priority via a finite-state Markov chain. The main strategy of the CL scheme is to design a Markov model by explicitly including adaptive modulation and coding at the physical layer, queuing at the data link layer, and the bursty nature of multimedia traffic classes at the application layer. Utilizing this Markov model, several important performance metrics in terms of packet loss rate, delay, and throughput are examined. In addition, our proposed framework is exploited in various multimedia applications, for example, the end-to-end real-time video streaming and CL optimization, which require the priority-based QoS adaptation for different applications. More importantly, the CL framework reveals important guidelines as to optimize the network performance