988 resultados para Reference frame transformation
Resumo:
The objective of this work was to validate, by quantitative PCR in real time (RT-qPCR), genes to be used as reference in studies of gene expression in soybean in drought-stressed trials. Four genes commonly used in soybean were evaluated: Gmβ-actin, GmGAPDH, GmLectin and GmRNAr18S. Total RNA was extracted from six samples: three from roots in a hydroponic system with different drought intensities (0, 25, 50, 75 and 100 minutes of water stress), and three from leaves of plants grown in sand with different soil moistures (15, 5 and 2.5% gravimetric humidity). The raw cycle threshold (Ct) data were analyzed, and the efficiency of each primer was calculated for an overall analysis of the Ct range among the different samples. The GeNorm application was used to evaluate the best reference gene, according to its stability. The GmGAPDH was the least stable gene, with the highest mean values of expression stability (M), and the most stable genes, with the lowest M values, were the Gmβ-actin and GmRNAr18S, when both root and leaves samples were tested. These genes can be used in RT-qPCR as reference gene for expression analysis.
Resumo:
The objective of this work was to perform the screening of soybean genotypes as to their ability to respond to the induction of hairy roots by Agrobacterium rhizogenes‑mediated transformation. Four Brazilian soybean cultivars (BRSMG 68 Vencedora, BRS 137, Embrapa 48, and MG/BR 46 Conquista) and two North American ones adapted to Brazilian cropping conditions (Bragg and IAS‑5) were screened for their capacity to respond to A. rhizogenes in protocols for in vitro hairy root culture and ex vitro composite plant production. Four‑day‑old seedlings with uniform size were injected with A. rhizogenes harboring the plasmid p35S‑GFP. Seedlings expressing green fluorescent protein (GFP) in at least one hairy root were used to determine the transformation frequency. Using an axenic in vitro protocol, excised cotyledons from four‑day‑old seedlings were infected with A. rhizogenes harboring the pCAMBIA1301 plasmid, containing the gusA reporter gene. The transformation frequency and the number of days for hairy root emergence after bacterial infection (DAI) were evaluated. The transformation frequency and DAI varied according to the genotype. Cultivars MG/BR 46 Conquista and BRSMG 68 Vencedora are more susceptible to A. rhizogenes and can be recommended for transformation experiments.
Resumo:
BACKGROUND: Urine catecholamines, vanillylmandelic, and homovanillic acid are recognized biomarkers for the diagnosis and follow-up of neuroblastoma. Plasma free (f) and total (t) normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MT) could represent a convenient alternative to those urine markers. The primary objective of this study was to establish pediatric centile charts for plasma metanephrines. Secondarily, we explored their diagnostic performance in 10 patients with neuroblastoma. PROCEDURE: We recruited 191 children (69 females) free of neuroendocrine disease to establish reference intervals for plasma metanephrines, reported as centile curves for a given age and sex based on a parametric method using fractional polynomials models. Urine markers and plasma metanephrines were measured in 10 children with neuroblastoma at diagnosis. Plasma total metanephrines were measured by HPLC with coulometric detection and plasma free metanephrines by tandem LC-MS. RESULTS: We observed a significant age-dependence for tNMN, fNMN, and fMN, and a gender and age-dependence for tMN, fNMN, and fMN. Free MT was below the lower limit of quantification in 94% of the children. All patients with neuroblastoma at diagnosis were above the 97.5th percentile for tMT, tNMN, fNMN, and fMT, whereas their fMN and tMN were mostly within the normal range. As expected, urine assays were inconstantly predictive of the disease. CONCLUSIONS: A continuous model incorporating all data for a given analyte represents an appealing alternative to arbitrary partitioning of reference intervals across age categories. Plasma metanephrines are promising biomarkers for neuroblastoma, and their performances need to be confirmed in a prospective study on a large cohort of patients. Pediatr Blood Cancer 2015;62:587-593. © 2015 Wiley Periodicals, Inc.
Resumo:
The objective of this work was to transfer Zucchini yellow mosaic virus coat protein (ZYMV-CP) and neomycin phosphotransferase II (NPT II) genes to the watermelon 'Crimson Sweet'(CS) genome, and to compare the transgenic progenies T1 and T2 with the nontransformed parental cultivar for morphological, pomological, growth and yield characteristics. The ZYMV-CP gene was transferred by Agrobacterium tumefaciens. The presence of the gene in transgenic T0, T1 and T2 plants was determined by polymerase chain reaction, and the results were confirmed by Southern blot. Two experiments were performed, one in the winter-spring and the other in the summer-autumn. In both experiments, the hypocotyl length of transgenic seedlings was significantly higher than that of nontransgenic parental ones. In the second experiment, the differences between transgenic and nontransgenic individuals were significant concerning fruit rind thickness, flesh firmness, fruit peduncle length, size of pistil scar, and a* values for fruit stripe or flesh color. Transferring ZYMV-CP gene to CS genome affected only a few characteristics from the 80 evaluated ones. The changes in rind thickness, flesh firmness and flesh color a* values are favorable, while the increase in the size of pistil scar is undesirable. The transgenic watermelon line having ZYMV-CP gene and the parental cultivar CS are very similar.
Resumo:
Diagnostic reference levels (DRLs) were established for 21 indication-based CT examinations for adults in Switzerland. One hundred and seventy-nine of 225 computed tomography (CT) scanners operated in hospitals and private radiology institutes were audited on-site and patient doses were collected. For each CT scanner, a correction factor was calculated expressing the deviation of the measured weighted computed tomography dose index (CTDI) to the nominal weighted CTDI as displayed on the workstation. Patient doses were corrected by this factor providing a realistic basis for establishing national DRLs. Results showed large variations in doses between different radiology departments in Switzerland, especially for examinations of the petrous bone, pelvis, lower limbs and heart. This indicates that the concept of DRLs has not yet been correctly applied for CT examinations in clinical routine. A close collaboration of all stakeholders is mandatory to assure an effective radiation protection of patients. On-site audits will be intensified to further establish the concept of DRLs in Switzerland.
Resumo:
This paper presents the use of our multimodal mixed reality telecommunication system to support remote acting rehearsal. The rehearsals involved two actors, located in London and Barcelona, and a director in another location in London. This triadic audiovisual telecommunication was performed in a spatial and multimodal collaborative mixed reality environment based on the 'destination-visitor' paradigm, which we define and put into use. We detail our heterogeneous system architecture, which spans the three distributed and technologically asymmetric sites, and features a range of capture, display, and transmission technologies. The actors' and director's experience of rehearsing a scene via the system are then discussed, exploring successes and failures of this heterogeneous form of telecollaboration. Overall, the common spatial frame of reference presented by the system to all parties was highly conducive to theatrical acting and directing, allowing blocking, gross gesture, and unambiguous instruction to be issued. The relative inexpressivity of the actors' embodiments was identified as the central limitation of the telecommunication, meaning that moments relying on performing and reacting to consequential facial expression and subtle gesture were less successful.
Resumo:
Background: Urine is still the matrix of choice to fight against doping, because it can be collected non-invasively during anti-doping tests. Most of the World Anti-Doping Agency's accredited laboratories have more than 20 years experience in analyzing this biological fluid and the majority of the compounds listed in the 2010 Prohibited List - International Standard are eliminated through the urinary apparatus. Storing and transporting urine samples for doping analyses does not include a specific protocol to prevent microbial and thermal degradation. The use of a rapid and reliable screening method could enable determine reference intervals for urine specimens in doping control samples and evaluate notably the prevalence of microbial contamination known to be responsible for the degradation of chemical substances in urine.Methods: The Sysmex(R) UF-500i is a recent urine flow cytometer analyzer capable of quantifying BACT and other urinary particles such as RBC, WBC, EC, DEBRIS, CAST, PATH. CAST, YLC, SRC as well as measuring urine conductivity. To determine urine anti-doping reference intervals, 501 samples received in our laboratory over a period of two months were submitted to an immediate examination. All samples were collected and then transported at room temperature. Analysis of variance was performed to test the effects of factors such as gender, test type [in-competition, out-of-competition] and delivery time.Results: The data obtained showed that most of the urine samples were highly contaminated with bacteria. The other urine particles were also very different according to the factors.Conclusions: The Sysmex(R) UF-500i was capable of providing a snapshot of urine particles present in the samples at the time of the delivery to the laboratory. These particles, BACT in particular, gave a good idea of the possible microbial degradation which had and/or could have occurred in the sample. This information could be used as the first quality control set up in WADA (World Anti-Doping Agency) accredited laboratories to determine if steroid profiles, endogenous and prohibited substances have possibly been altered. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).
Resumo:
The objective of this work was to produce transgenic 'Pêra' and 'Valência' sweet orange plants using the D4E1 gene driven by the Arabidopsis thaliana phloem protein (AtPP2) promoter and to quantify transgene expression in different transformation events. Genetic transformation experiments were carried out with epicotyl segments co‑cultivated with Agrobacterium tumefaciens. Six plants from 'Pêra' sweet orange and seven plants from 'Valência' sweet orange were confirmed as different transgenic events by means of the polymerase chain reaction (PCR) and the Southern blot techniques. Transgene expression was quantified using real‑time quantitative PCR. D4E1 gene expression levels vary from 5 up to 50 times among different transformation events.
Resumo:
The inverse scattering problem concerning the determination of the joint time-delayDoppler-scale reflectivity density characterizing continuous target environments is addressed by recourse to the generalized frame theory. A reconstruction formula,involving the echoes of a frame of outgoing signals and its corresponding reciprocalframe, is developed. A ‘‘realistic’’ situation with respect to the transmission ofa finite number of signals is further considered. In such a case, our reconstruction formula is shown to yield the orthogonal projection of the reflectivity density onto a subspace generated by the transmitted signals.
Resumo:
In this paper, the problem of frame-level symboltiming acquisition for UWB signals is addressed. The main goalis the derivation of a frame-level timing estimator which does notrequire any prior knowledge of neither the transmitted symbolsnor the received template waveform. The independence withrespect to the received waveform is of special interest in UWBcommunication systems, where a fast and accurate estimation ofthe end-to-end channel response is a challenging and computationallydemanding task. The proposed estimator is derived under theunconditional maximum likelihood criterion, and because of thelow power of UWB signals, the low-SNR assumption is adopted. Asa result, an optimal frame-level timing estimator is derived whichoutperforms existing acquisition methods in low-SNR scenarios.