901 resultados para Recycling endosome


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Purpose: Calcitonin gene‐related peptide (CGRP) is a potent vasodilator, implicated in the pathogenesis of migraine. CGRP activates a receptor complex comprising, calcitonin receptor‐like receptor (CLR) and receptor activity‐modifying protein 1 (RAMP1). In vitro studies indicate recycling of CLR•RAMP1 is regulated by degradation of CGRP in early endosomes by endothelin‐converting enzyme‐1 (ECE‐1). However, it is not known if ECE‐1 regulates the resensitization of CGRP‐induced responses in functional arterial tissue. Experimental Approach: CLR, ECE‐1a‐d and RAMP1 expression in rat mesenteric artery smooth muscle cells (RMA‐SMCs) and mesenteric arteries was analyzed by RT‐PCR and by immunofluorescence and confocal microscopy. CGRP‐induced signaling in cells was examined by measuring cAMP production and ERK activation. CGRP‐induced relaxation of arteries was measured by isometric wire myography. ECE‐1 was inhibited using the specific inhibitor, SM‐19712. Key Results: RMA‐SMCs and arteries contained mRNA for CLR, ECE‐1a‐d and RAMP1. ECE‐1 was present in early endosomes of RMA‐SMCs and in the smooth muscle layer of arteries. CGRP induced endothelium‐independent relaxation of arteries. ECE‐1 inhibition had no effect on initial CGRP‐induced responses but reduced cAMP generation in RMA‐SMCs and vasodilation in mesenteric arteries responses to subsequent CGRP challenges. Conclusions and Implications: ECE‐1 regulates the resensitization of responses to CGRP in RMA‐SMCs and mesenteric arteries. CGRP‐induced relaxation does not involve endothelium‐derived pathways. This is the first report of ECE‐1 regulating CGRP responses in SMCs and arteries. ECE‐1 inhibitors may attenuate an important vasodilatory pathway, implicated in primary headaches and may represent a new therapeutic approach for the treatment of migraine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of small quantities of nanoparticles to conventional and sustainable thermoplastics leads to property enhancements with considerable potential in many areas of applications including food packaging 1, lightweight composites and high performance materials 2. In the case of sustainable polymers 3, the addition of nanoparticles may well sufficiently enhance properties such that the portfolio of possible applications is greatly increased. Most engineered nanoparticles are highly stable and these exist as nanoparticles prior to compounding with the polymer resin. They remain as nanoparticles during the active use of the packaging material as well as in the subsequent waste and recycling streams. It is also possible to construct the nanoparticles within the polymer films during processing from organic compounds selected to present minimal or no potential health hazards 4. In both cases the characterisation of the resultant nanostructured polymers presents a number of challenges. Foremost amongst these are the coupled challenges of the nanoscale of the particles and the low fraction present in the polymer matrix. Very low fractions of nanoparticles are only effective if the dispersion of the particles is good. This continues to be an issue in the process engineering but of course bad dispersion is much easier to see than good dispersion. In this presentation we show the merits of a combined scattering (neutron and x-ray) and microscopy (SEM, TEM, AFM) approach. We explore this methodology using rod like, plate like and spheroidal particles including metallic particles, plate-like and rod-like clay dispersions and nanoscale particles based on carbon such as nanotubes and graphene flakes. We will draw on a range of material systems, many explored in partnership with other members of Napolynet. The value of adding nanoscale particles is that the scale matches the scale of the structure in the polymer matrix. Although this can lead to difficulties in separating the effects in scattering experiments, the result in morphological studies means that both the nanoparticles and the polymer morphology are revealed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many virulence organelles of Gram-negative bacterial pathogens are assembled via the chaperone/ usher pathway. The chaperone transports organelle subunits across the periplasm to the outer membrane usher, where they are released and incorporated into growing fibers. Here, we elucidate the mechanism of the usher-targeting step in assembly of the Yersinia pestis F1 capsule at the atomic level. The usher interacts almost exclusively with the chaperone in the chaperone:subunit complex. In free chaperone, a pair of conserved proline residues at the beginning of the subunit-binding loop form a ‘‘proline lock’’ that occludes the usher-binding surface and blocks usher binding. Binding of the subunit to the chaperone rotates the proline lock away from the usher-binding surface, allowing the chaperone-subunit complex to bind to the usher. We show that the proline lock exists in other chaperone/usher systems and represents a general allosteric mechanism for selective targeting of chaperone:subunit complexes to the usher and for release and recycling of the free chaperone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the changing nature of the facilities management (FM) profession, facilities managers are increasingly engaged with the evolving sustainability agenda in the UK and the development or uptake of sustainability policies within their organisations. This study investigates how facilities managers are engaging with the sustainability agenda and the drivers, policy issues and information they use to improve their sustainability performance management. A web based self-administered questionnaire survey of facilities managers in the UK was conducted to identify drivers and issues that influence and support good sustainable practices. A total of 268 facilities managers responded. The results indicate that legislation is the most important driver for the implementation of sustainable practices. Corporate image and Organisational ethos are also recognised. However demand for efficient monitoring, management and reporting on environmental impact is not highly rated even though the top three issues of sustainability managed by facilities managers are energy management, waste and recycling management and carbon footprint. In addition, facilities managers are expected to take ownership of activities assigned to the reduction of carbon emission. Government industries and organisation with high turnover are more likely to have a sustainability policy. Financial constraints are the main barriers while legislations are the main driver for implementing sustainability. For non-profit organisations and the charitable sector, financial constraints are no hindrance to implementing a sustainability policy. The conclusion drawn is that sustainability agendas continue to be influenced by regulated environmental issues rather than a balanced approach which takes into consideration the wider social and economic aspects of sustainability. While this scenario is far from ideal, the expectation is that the organisation will trust FM to take a vital role in delivering a comprehensive sustainability policy due to the rising tide of legislation, public scrutiny, as well as the needed business case for genuinely embracing sustainability. However, as the integration of sustainability with core business strategies is continuously evolving the emphasis on different drivers will vary from organisation to organisation as well as the responsibilities of facilities managers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects in biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating G protein-coupled receptors (GPCRs). At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevents signaling. Conversely, cell-surface peptidases can also generate bioactive peptides that directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signaling. Certain peptidases can signals directly to cells, by cleaving GPCR to initiate intracellular signaling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signaling and mediate downregulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signaling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signaling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signaling in disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by beta-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by beta-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and beta-arrestin at the plasma membrane, and the SP-NK(1)R-beta-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-beta-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating beta-arrestin-mediated endosomal signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with beta-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of beta-arrestin1 and PP2A with noninternalized NK(1)R. beta-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that beta-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping beta-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires beta-arrestin1. ECE-1 promotes this process by releasing beta-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although long regarded as a conduit for the degradation or recycling of cell surface receptors, the endosomal system is also an essential site of signal transduction. Activated receptors accumulate in endosomes, and certain signaling components are exclusively localized to endosomes. Receptors can continue to transmit signals from endosomes that are different from those that arise from the plasma membrane, resulting in distinct physiological responses. Endosomal signaling is widespread in metazoans and plants, where it transmits signals for diverse receptor families that regulate essential processes including growth, differentiation and survival. Receptor signaling at endosomal membranes is tightly regulated by mechanisms that control agonist availability, receptor coupling to signaling machinery, and the subcellular localization of signaling components. Drugs that target mechanisms that initiate and terminate receptor signaling at the plasma membrane are widespread and effective treatments for disease. Selective disruption of receptor signaling in endosomes, which can be accomplished by targeting endosomal-specific signaling pathways or by selective delivery of drugs to the endosomal network, may provide novel therapies for disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The metalloendopeptidase endothelin-converting enzyme 1 (ECE-1) is prominently expressed in the endothelium where it converts big endothelin to endothelin-1, a vasoconstrictor peptide. Although ECE-1 is found in endosomes in endothelial cells, the role of endosomal ECE-1 is unclear. ECE-1 degrades the pro-inflammatory neuropeptide substance P (SP) in endosomes to promote recycling and re-sensitization of its neurokinin 1 (NK(1)) receptor. We investigated whether ECE-1 regulates NK(1) receptor re-sensitization and the pro-inflammatory effects of SP in the endothelium. EXPERIMENTAL APPROACH: We examined ECE-1 expression, SP trafficking and NK(1) receptor re-sensitization in human microvascular endothelial cells (HMEC-1), and investigated re-sensitization of SP-induced plasma extravasation in rats. KEY RESULTS: HMEC-1 expressed all four ECE-1 isoforms (a-d), and fluorescent SP trafficked to early endosomes containing ECE-1b/d. The ECE-1 inhibitor SM-19712 prevented re-sensitization of SP-induced Ca2+ signals in HMEC-1 cells. Immunoreactive ECE-1 and NK(1) receptors co-localized in microvascular endothelial cells in the rat. SP-induced extravasation of Evans blue in the urinary bladder, skin and ears of the rat desensitized when the interval between two SP injections was 10 min, and re-sensitized after 480 min. SM-19712 inhibited this re-sensitization. CONCLUSIONS AND IMPLICATIONS: By degrading endocytosed SP, ECE-1 promotes the recycling and re-sensitization of NK(1) receptors in endothelial cells, and thereby induces re-sensitization of the pro-inflammatory effects of SP. Thus, ECE-1 inhibitors may ameliorate the pro-inflammatory actions of SP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatostatin-receptor 1 (sst1) is an autoreceptor in the central nervous system that regulates the release of somatostatin. Sst1 is present intracellularly and at the cell surface. To investigate sst1 trafficking, rat sst1 tagged with epitope was expressed in rat insulinoma cells 1046-38 (RIN-1046-38) and tracked by antibody labeling. Confocal microscopic analysis revealed colocalization of intracellularly localized rat sst1-human simplex virus (HSV) with Rab5a-green fluorescent protein and Rab11a-green fluorescent protein, indicating the distribution of the receptor in endocytotic and recycling organelles. Somatostatin-14 induced internalization of cell surface receptors and reduction of binding sites on the cell surface. It also stimulated recruitment of intracellular sst1-HSV to the plasma membrane. Confocal analysis of sst1-HSV revealed that the receptor was initially transported within superficial vesicles. Prolonged stimulation of the cells with the peptide agonist induced intracellular accumulation of somatostatin-14. Because the number of cell surface binding sites did not change during prolonged stimulation, somatostatin-14 was internalized through a dynamic process of continuous endocytosis, recycling, and recruitment of intracellularly present sst1-HSV. Accumulated somatostatin-14 bypassed degradation via the endosomal-lysosomal route and was instead rapidly released as intact and biologically active somatostatin-14. Our results show for the first time that sst1 mediates a dynamic process of endocytosis, recycling, and re-endocytosis of its cognate ligand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although cell surface metalloendopeptidases degrade neuropeptides in the extracellular fluid to terminate signaling, the function of peptidases in endosomes is unclear. We report that isoforms of endothelin-converting enzyme-1 (ECE-1a-d) are present in early endosomes, where they degrade neuropeptides and regulate post-endocytic sorting of receptors. Calcitonin gene-related peptide (CGRP) co-internalizes with calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), beta-arrestin2, and ECE-1 to early endosomes, where ECE-1 degrades CGRP. CGRP degradation promotes CLR/RAMP1 recycling and beta-arrestin2 redistribution to the cytosol. ECE-1 inhibition or knockdown traps CLR/RAMP1 and beta-arrestin2 in endosomes and inhibits CLR/RAMP1 recycling and resensitization, whereas ECE-1 overexpression has the opposite effect. ECE-1 does not regulate either the resensitization of receptors for peptides that are not ECE-1 substrates (e.g., angiotensin II), or the recycling of the bradykinin B(2) receptor, which transiently interacts with beta-arrestins. We propose a mechanism by which endosomal ECE-1 degrades neuropeptides in endosomes to disrupt the peptide/receptor/beta-arrestin complex, freeing internalized receptors from beta-arrestins and promoting recycling and resensitization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The E3 ligase c-Cbl ubiquitinates protease-activated receptor 2 (PAR(2)), which is required for post-endocytic sorting of PAR(2) to lysosomes, where degradation arrests signaling. The mechanisms of post-endocytic sorting of ubiquitinated receptors are incompletely understood. Here, we investigated the role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), in post-endocytic sorting and signaling of PAR(2). In HEK-PAR(2) cells, PAR(2) activating peptide (PAR(2)-AP) induced PAR(2) trafficking from the cell surface to early endosomes containing endogenous HRS, and then to lysosomes. HRS overexpression or knockdown with small interfering RNA caused formation of enlarged HRS-positive endosomes, where activated PAR(2) and c-Cbl accumulated, and PAR(2) failed to traffic to lysosomes. Overexpression of HRS prevented PAR(2)-AP-induced degradation of PAR(2), as determined by Western blotting. Overexpression of HRS mutant lacking an ubiquitin-binding motif similarly caused retention of PAR(2) in enlarged endosomes. Moreover, HRS overexpression or knockdown caused retention of ubiquitin-resistant PAR(2)Delta14K/R in enlarged HRS-containing endosomes, preventing recycling and resensitization of PAR(2)Delta14K/R. HRS overexpression or knockdown similarly prevented lysosomal trafficking and recycling of calcitonin receptor-like receptor, a non-ubiquitinated receptor that traffics to lysosomes after sustained activation and recycles after transient activation. Thus, HRS plays a critically important role in the post-endocytic sorting of single receptors, PAR(2) and CLR, to both degradative and recycling pathways. This sorting role for HRS is independent of its ubiquitin-interacting motif, and it can regulate trafficking of both ubiquitinated and non-ubiquitinated PAR(2) and non-ubiquitinated CLR. The ultimate sorting decision to degradative or recycling pathways appears to occur downstream from HRS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene-related peptide (CGRP). Although CGRP induces endocytosis of CLR/RAMP1, little is known about post-endocytic sorting of these proteins. We observed that the duration of stimulation with CGRP markedly affected post-endocytic sorting of CLR/RAMP1. In HEK and SK-N-MC cells, transient stimulation (10(-7) M CGRP, 1 h), induced CLR/RAMP1 recycling with similar kinetics (2-6 h), demonstrated by labeling receptors in living cells with antibodies to extracellular epitopes. Recycling of CLR/RAMP1 correlated with resensitization of CGRP-induced increases in [Ca(2+)](i). Cycloheximide did not affect resensitization, but bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPases, abolished resensitization. Recycling CLR and RAMP1 were detected in endosomes containing Rab4a and Rab11a, and expression of GTPase-defective Rab4aS22N and Rab11aS25N inhibited resensitization. After sustained stimulation (10(-7) M CGRP, >2 h), CLR/RAMP1 trafficked to lysosomes. RAMP1 was degraded approximately 4-fold more rapidly than CLR (RAMP1, 45% degradation, 5 h; CLR, 54% degradation, 16 h), determined by Western blotting. Inhibitors of lysosomal, but not proteasomal, proteases prevented degradation. Sustained stimulation did not induce detectable mono- or polyubiquitination of CLR or RAMP1, determined by immunoprecipitation and Western blotting. Moreover, a RAMP1 mutant lacking the only intracellular lysine (RAMP1K142R) internalized and was degraded normally. Thus, after transient stimulation with CGRP, CLR and RAMP1 traffic from endosomes to the plasma membrane, which mediates resensitization. After sustained stimulation, CLR and RAMP1 traffic from endosomes to lysosomes by ubiquitin-independent mechanisms, where they are degraded at different rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transient stimulation with substance P (SP) induces endocytosis and recycling of the neurokinin-1 receptor (NK(1)R). The effects of sustained stimulation by high concentrations of SP on NK(1)R trafficking and Ca(2+) signaling, as may occur during chronic inflammation and pain, are unknown. Chronic exposure to SP (100 nm, 3 h) completely desensitized Ca(2+) signaling by wild-type NK(1)R (NK(1)Rwt). Resensitization occurred after 16 h, and cycloheximide prevented resensitization, implicating new receptor synthesis. Lysine ubiquitination of G-protein-coupled receptors is a signal for their trafficking and degradation. Lysine-deficient mutant receptors (NK(1)RDelta5K/R, C-terminal tail lysines; and NK(1)RDelta10K/R, all intracellular lysines) were expressed at the plasma membrane and were functional because they responded to SP by endocytosis and by mobilization of Ca(2+) ions. SP desensitized NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. However, NK(1)RDelta5K/R and NK(1)RDelta10K/R resensitized 4-8-fold faster than NK(1)Rwt by cycloheximide-independent mechanisms. NK(1)RDelta325 (a naturally occurring truncated variant) showed incomplete desensitization, followed by a marked sensitization of signaling. Upon labeling receptors in living cells using antibodies to extracellular epitopes, we observed that SP induced endocytosis of NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. After 4 h in SP-free medium, NK(1)RDelta5K/R and NK(1)RDelta10K/R recycled to the plasma membrane, whereas NK(1)Rwt remained internalized. SP induced ubiquitination of NK(1)Rwt and NK(1)RDelta5K/R as determined by immunoprecipitation under nondenaturing and denaturing conditions and detected with antibodies for mono- and polyubiquitin. NK(1)RDelta10K/R was not ubiquitinated. Whereas SP induced degradation of NK(1)Rwt, NK(1)RDelta5K/R and NK(1)RDelta10K/R showed approximately 50% diminished degradation. Thus, chronic stimulation with SP induces ubiquitination of the NK(1)R, which mediates its degradation and down-regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Farmland invertebrates play a pivotal role in the provision of ecosystem services, i.e. services that benefit humans. For example, bumblebees, solitary bees and honeybees, are crucial to the pollination of many of the world's crops and wildflowers, with over 70% of the world's major food crops dependent on the pollination services provided by these insects. The larvae of some butterfly species are considered to be pests; however, together with moth and sawfly larvae, they represent a key dietary component for many farmland birds. Spiders and ground beetles predate on crop pests including aphids, whilst soil macrofauna such as earthworms are vital for soil fertility services and nutrient recycling. Despite their importance, population declines of invertebrates have been observed during the last sixty years in the UK and NW Europe. For example, seven UK bumblebee species are in decline, and in the last 20 years, the species Bombus subterraneus (short-haired bumblebee) has become extinct, whilst there was a 54% decline in honeybee colony numbers in England from 1985 to 2005. Comparable trends have been documented for butterflies with a 23% decline in UK farmland species such as Anthocharis cardamines (orange tip) between 1990 and 2007. These declines have been widely attributed to the modern intensive arable management practices that have been developed to maximise crop yield. For example, loss and fragmentation of foraging and nesting habitats, including species-rich meadows and hedgerows, have been implicated in the decline of bees and butterflies. Increased use of herbicides and fertilisers has caused detrimental effects on many plant species with negative consequences for predatory invertebrates such as spiders and beetles which rely on plants for food and shelter.