805 resultados para Reconstructive dosimetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - For dose reduction actions, the principle of “image quality as good as possible” to “image quality as good as needed” requires to know whether the physical measures and visual image quality relate. Visual evaluation and objective physical measures of image quality can appear to be different. If there is no noticeable effect on the visual image quality with a low dose but there is a objective physical measure impact, then the overall dose may be reduced without compromising the diagnostic image quality. Low dose imaging can be used for certain types of observations, e.g. thoracic scoliosis, control after metal implantation for osteosynthesis, reviewing pneumonia and tuberculosis. Aim of the study - To determine whether physical measures of noise predict visual (clinical) image quality at low dose levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses. Conclusion/Significance: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the construction of anatomically realistic three-dimensional in-silico breast phantoms with adjustable sizes, shapes and morphologic features. The concept of multiscale spatial resolution is implemented for generating breast tissue images from multiple modalities. Breast epidermal boundary and subcutaneous fat layer is generated by fitting an ellipsoid and 2nd degree polynomials to reconstructive surgical data and ultrasound imaging data. Intraglandular fat is simulated by randomly distributing and orienting adipose ellipsoids within a fibrous region immediately within the dermal layer. Cooper’s ligaments are simulated as fibrous ellipsoidal shells distributed within the subcutaneous fat layer. Individual ductal lobes are simulated following a random binary tree model which is generated based upon probabilistic branching conditions described by ramification matrices, as originally proposed by Bakic et al [3, 4]. The complete ductal structure of the breast is simulated from multiple lobes that extend from the base of the nipple and branch towards the chest wall. As lobe branching progresses, branches are reduced in height and radius and terminal branches are capped with spherical lobular clusters. Biophysical parameters are mapped onto the complete anatomical model and synthetic multimodal images (Mammography, Ultrasound, CT) are generated for phantoms of different adipose percentages (40%, 50%, 60%, and 70%) and are analytically compared with clinical examples. Results demonstrate that the in-silico breast phantom has applications in imaging performance evaluation and, specifically, great utility for solving image registration issues in multimodality imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introdução – A dosimetria in vivo é útil na medição da dose administrada aos doentes durante o tratamento, avaliando diferenças significativas entre a dose prescrita e a dose administrada no volume alvo, bem como nos órgãos de risco. Objetivo – Comparar a dose medida com a dose calculada em doentes com tumores de mama com e sem filtro físico. Métodos – Realizaram-se medições da dose na pele, utilizando díodos tipo–p, para os campos tangenciais e respetivos field-in-field em 38 doentes. Resultados – Verificaram-se diferenças estatisticamente significativas nos campos tangenciais open (ρ=0,000). Discussão – Estudos reportam desvios sistemáticos significativos entre a dose calculada e a dose medida. Conclusão – Com este estudo conclui-se que não existe influência nas doses devido à presença do filtro físico.