954 resultados para Reaction Time Task
Resumo:
We developed a real-time detection (RTD) polymerase chain reaction (PCR) with rapid thermal cycling to detect and quantify Pseudomonas aeruginosa in wound biopsy samples. This method produced a linear quantitative detection range of 7 logs, with a lower detection limit of 103 colony-forming units (CFU)/g tissue or a few copies per reaction. The time from sample collection to result was less than 1h. RTD-PCR has potential for rapid quantitative detection of pathogens in critical care patients, enabling early and individualized treatment.
Resumo:
The molecular reaction mechanism of the GTPase-activating protein (GAP)-catalyzed GTP hydrolysis by Ras was investigated by time resolved Fourier transform infrared (FTIR) difference spectroscopy using caged GTP (P3-1-(2-nitro)phenylethyl guanosine 5′-O-triphosphate) as photolabile trigger. This approach provides the complete GTPase reaction pathway with time resolution of milliseconds at the atomic level. Up to now, one structural model of the GAP⋅Ras⋅GDP⋅AlFx transition state analog is known, which represents a “snap shot” along the reaction-pathway. As now revealed, binding of GAP to Ras⋅GTP shifts negative charge from the γ to β phosphate. Such a shift was already identified by FTIR in GTP because of Ras binding and is now shown to be enhanced by GAP binding. Because the charge distribution of the GAP⋅Ras⋅GTP complex thus resembles a more dissociative-like transition state and is more like that in GDP, the activation free energy is reduced. An intermediate is observed on the reaction pathway that appears when the bond between β and γ phosphate is cleaved. In the intermediate, the released Pi is strongly bound to the protein and surprisingly shows bands typical of those seen for phosphorylated enzyme intermediates. All these results provide a mechanistic picture that is different from the intrinsic GTPase reaction of Ras. FTIR analysis reveals the release of Pi from the protein complex as the rate-limiting step for the GAP-catalyzed reaction. The approach presented allows the study not only of single proteins but of protein–protein interactions without intrinsic chromophores, in the non-crystalline state, in real time at the atomic level.
Resumo:
Typewritten.
Resumo:
Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
To determine whether the visuospatial n-back working memory task is a reliable and valid measure of cognitive processes believed to underlie intelligence, this study compared the reaction times and accuracy of perforniance of 70 participants, with performance on the Multidimensional Aptitude Battery (MAB). Testing was conducted over two sessions separated by 1 week. Participants completed the MAB during the second test session. Moderate testretest reliability for percentage accuracy scores was found across the four levels of the n-back task, whilst reaction times were highly reliable. Furthermore, participants' performance on the MAB was negatively correlated with accuracy of performance at the easier levels of the n-back task and positively correlated with accuracy of performance at the harder task levels. These findings confirm previous research examining the cognitive basis of intelligence, and suggest that intelligence is the product of faster speed of information processing, as well as superior working memory capacity. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A 5'-nuclease real-time reverse transcriptase-polymerase chain reaction assay was developed for the detection of influenza type A and was validated using a range of influenza A subtypes, including avian strains, and 126 nasopharyngeal aspirate samples. The results show the assay is suitable for screening for influenza A infections, particularly in regions where avian strains may be circulating. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We present our approach to real-time service-oriented scheduling problems with the objective of maximizing the total system utility. Different from the traditional utility accrual scheduling problems that each task is associated with only a single time utility function (TUF), we associate two different TUFs—a profit TUF and a penalty TUF—with each task, to model the real-time services that not only need to reward the early completions but also need to penalize the abortions or deadline misses. The scheduling heuristics we proposed in this paper judiciously accept, schedule, and abort real-time services when necessary to maximize the accrued utility. Our extensive experimental results show that our proposed algorithms can significantly outperform the traditional scheduling algorithms such as the Earliest Deadline First (EDF), the traditional utility accrual (UA) scheduling algorithms, and an earlier scheduling approach based on a similar model.
Resumo:
Older adults may have trouble when performing activities of daily living due to decrease in physical strength and degradation of neuromotor and musculoskeletal function. Motor activation patterns during Lateral Step Down and Step Up from 4-inch and 8-inch step heights was assessed in younger (n=8, 24.4 years) and older adults (n=8, 58.9 years) using joint angle kinematics and electromyography of lower extremity muscles. Ground reaction forces were used to ascertain the loading, stabilization and unloading phases of the tasks. Older adults had an altered muscle activation sequence and significantly longer muscle bursts during loading for the tibialis anterior, gastrocnemius, vastus medialis, bicep femoris, gluteus medius and gluteus maximus muscles of the stationary leg. They also demonstrated a significantly larger swing time (579.1 ms vs. 444.8 ms) during the step down task for the moving leg. The novel data suggests presence of age-related differences in motor coordination during lateral stepping.
Resumo:
Atomic layer deposition (ALD) of highly conformal, silicon-based dielectric thin films has become necessary because of the continuing decrease in feature size in microelectronic devices. The ALD of oxides and nitrides is usually thought to be mechanistically similar, but plasma-enhanced ALD of silicon nitride is found to be problematic, while that of silicon oxide is straightforward. To find why, the ALD of silicon nitride and silicon oxide dielectric films was studied by applying ab initio methods to theoretical models for proposed surface reaction mechanisms. The thermodynamic energies for the elimination of functional groups from different silicon precursors reacting with simple model molecules were calculated using density functional theory (DFT), explaining the lower reactivity of precursors toward the deposition of silicon nitride relative to silicon oxide seen in experiments, but not explaining the trends between precursors. Using more realistic cluster models of amine and hydroxyl covered surfaces, the structures and energies were calculated of reaction pathways for chemisorption of different silicon precursors via functional group elimination, with more success. DFT calculations identified the initial physisorption step as crucial toward deposition and this step was thus used to predict the ALD reactivity of a range of amino-silane precursors, yielding good agreement with experiment. The retention of hydrogen within silicon nitride films but not in silicon oxide observed in FTIR spectra was accounted for by the theoretical calculations and helped verify the application of the model.
Resumo:
BACKGROUND AND OBJECTIVES: Minimal residual disease (MRD) studies are useful in multiple myeloma (MM). However, the definition of the best technique and clinical utility are still unresolved issues. The aim of this study was to analyze and compare the clinical utility of MRD studies in MM with two different techniques: allelic-specific oligonucleotide real-time quantitative PCR (ASO-RQ-PCR), and flow cytometry (FCM). DESIGN AND METHODS: Bone marrow samples from 32 MM patients who had achieved complete response after transplantation were evaluated by ASO-RQ-PCR, using TaqMan technology, and multiparametric FCM. RESULTS: ASO-RQ-PCR was only applicable in 75% of patients for a variety of technical reasons, while FCM was applicable in up to 90%. Therefore, simultaneous PCR/FCM analysis was possible in only 24 patients. The number of residual tumor cells identified by both techniques was very similar (mean=0.29%, range=0.001-1.61%, correlation coefficient=0.861). However, RQ-PCR was able to detect residual myelomatous cells in 17 patients while FCM only did so in 11; thus, 6 cases were FCM negative but PCR positive, all of them displaying a very low number of clonal cells (median=0.014%, range=0.001-0.11). Using an MRD threshold of 0.01% (10(-4)) two risk groups with significantly different progression-free survival could be identified by either PCR (34 vs. 15m, p=0.04) or FCM (27 vs. 10m, p=0.05). INTERPRETATION AND CONCLUSIONS: Although MRD evaluation by ASO-RQ-PCR is slightly more sensitive and specific than FCM, it is applicable in a lower proportion of MM patients and is more time-consuming, while both techniques provide similar prognostic information.
Resumo:
Objective: Caffeine has been shown to have effects on certain areas of cognition, but in executive functioning the research is limited and also inconsistent. One reason could be the need for a more sensitive measure to detect the effects of caffeine on executive function. This study used a new non-immersive virtual reality assessment of executive functions known as JEF© (the Jansari Assessment of Executive Function) alongside the ‘classic’ Stroop Colour- Word task to assess the effects of a normal dose of caffeinated coffee on executive function. Method: Using a double-blind, counterbalanced within participants procedure 43 participants were administered either a caffeinated or decaffeinated coffee and completed the ‘JEF©’ and Stroop tasks, as well as a subjective mood scale and blood pressure pre- and post condition on two separate occasions a week apart. JEF© yields measures for eight separate aspects of executive functions, in addition to a total average score. Results: Findings indicate that performance was significantly improved on the planning, creative thinking, event-, time- and action-based prospective memory, as well as total JEF© score following caffeinated coffee relative to the decaffeinated coffee. The caffeinated beverage significantly decreased reaction times on the Stroop task, but there was no effect on Stroop interference. Conclusion: The results provide further support for the effects of a caffeinated beverage on cognitive functioning. In particular, it has demonstrated the ability of JEF© to detect the effects of caffeine across a number of executive functioning constructs, which weren’t shown in the Stroop task, suggesting executive functioning improvements as a result of a ‘typical’ dose of caffeine may only be detected by the use of more real-world, ecologically valid tasks.
Resumo:
This study aimed to standardise an in-house real-time polymerase chain reaction (rtPCR) to allow quantification of hepatitis B virus (HBV) DNA in serum or plasma samples, and to compare this method with two commercial assays, the Cobas Amplicor HBV monitor and the Cobas AmpliPrep/Cobas TaqMan HBV test. Samples from 397 patients from the state of São Paulo were analysed by all three methods. Fifty-two samples were from patients who were human immunodeficiency virus and hepatitis C virus positive, but HBV negative. Genotypes were characterised, and the viral load was measure in each sample. The in-house rtPCR showed an excellent success rate compared with commercial tests; inter-assay and intra-assay coefficients correlated with commercial tests (r = 0.96 and r = 0.913, p < 0.001) and the in-house test showed no genotype-dependent differences in detection and quantification rates. The in-house assay tested in this study could be used for screening and quantifying HBV DNA in order to monitor patients during therapy.
Resumo:
Vesiculoviruses (VSV) are zoonotic viruses that cause vesicular stomatitis disease in cattle, horses and pigs, as well as sporadic human cases of acute febrile illness. Therefore, diagnosis of VSV infections by reliable laboratory techniques is important to allow a proper case management and implementation of strategies for the containment of virus spread. We show here a sensitive and reproducible real-time reverse transcriptase polymerase chain reaction (RT-PCR) for detection and quantification of VSV. The assay was evaluated with arthropods and serum samples obtained from horses, cattle and patients with acute febrile disease. The real-time RT-PCR amplified the Piry, Carajas, Alagoas and Indiana Vesiculovirus at a melting temperature 81.02 ± 0.8ºC, and the sensitivity of assay was estimated in 10 RNA copies/mL to the Piry Vesiculovirus. The viral genome has been detected in samples of horses and cattle, but not detected in human sera or arthropods. Thus, this assay allows a preliminary differential diagnosis of VSV infections.