945 resultados para Rare earth compounds
Resumo:
Praseodymium, under very high pressures, shows a magnetic behavior similar to that of cerium at normal pressure.
Resumo:
In the present study the origin of clay deposits occurring in an inland platform, in central Portugal, was investigated by their mineralogical and chemical composition. The clay deposits, exploited for ceramic industry are composed of silt-clay facies, the Monteira Member and the Arroça Member, which are assigned to the Coja Formation (Paleogene) and the Campelo Formation (Miocene), respectively. These clayey facies show almost compositional homogeneity, especially concerning texture. The mineralogical composition of the Monteira Member displays slightly higher content in smectite and interstratified clay minerals, which is supported by the chemical composition of samples analyzed. Both members present similar REE patterns, displaying an intense weathering record and little variation in the source area composition. Minor element geochemistry suggests low content in heavy minerals and transition metals. REE patterns and ratios of geochemical parameters support the dominant metasedimentary provenance, with a granite source contribution and also mature recycled sediments of continental origin. The study results’ suggest that the clays of these two members have the same source in terms of lithology and recycled sediments from the Hesperian massif. During the deposition of the Arroça Member, a major remobilization of the Monteira Member is suggested, explaining the geochemical similarity of both facies.
Resumo:
Over the past decades, rare earth elements (REE) and their radioactive isotopes have received tremendous attention in sedimentary geochemistry, as tracers for the geological history of the continental crust and provenance studies. In this study, we report on elemental concentrations and neodymium (Nd) isotopic compositions for a large number of sediments collected near the mouth of rivers worldwide, including some of the world’s major rivers. Sediments were leached for removal of non-detrital components, and both clay and silt fractions were retained for separate geochemical analyses. Our aim was to re-examine, at the scale of a large systematic survey, whether or not REE and Nd isotopes could be fractionated during Earth surface processes. Our results confirmed earlier assumptions that river sediments do not generally exhibit any significant grain-size dependent Nd isotopic variability. Most sediments from rivers draining old cratonic areas, sedimentary systems and volcanic provinces displayed similar Nd isotopic signatures in both clay and silt fractions, with ΔεNd (clay-silt) < |1.| A subtle decoupling of Nd isotopes between clays and silts was identified however in a few major river systems (e.g. Nile, Mississippi, Fraser), with clays being systematically shifted towards more radiogenic values. This observation suggests that preferential weathering of volcanic and/or sedimentary rocks relative to more resistant lithologies may occur in river basins, possibly leading locally to Nd isotopic decoupling between different size fractions. Except for volcanogenic sediments, silt fractions generally displayed homogeneous REE concentrations, exhibiting relatively flat shale-normalized patterns. However, clay fractions were almost systematically characterized by a progressive enrichment from the heavy to the light REE and a positive europium (Eu) anomaly. In agreement with results from previous soil investigations, the observed REE fractionation between clays and silts is probably best explained by preferential alteration of feldspars and/or accessory mineral phases. Importantly, this finding clearly indicates that silicate weathering can lead to decoupling of REE between different grain-size fractions, with implications for sediment provenance studies. Finally, we propose a set of values for a World River Average Clay (WRAC) and Average Silt (WRAS), which provide new estimates for the average composition of the weathered and eroded upper continental crust, respectively, and could be used for future comparison purposes.
Resumo:
Structural characteristics of combustion synthesized, calcined and densified pure and doped nanoceria with tri-valent cations of Er, Y, Gd, Sm and Nd were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The results showed that the as-synthesized and calcined nanopowders were mesoporous and calculated lattice parameters were close to theoretical ion-packing model. The effect of dopants on elastic modulus, microhardness and fracture toughness of sintered pure and doped ceria were investigated. It was observed that tri-valent cation dopants increased the hardness of the ceria, whereas the fracture toughness and elastic modulus were decreased.
Resumo:
2016
Resumo:
The absorption spectra and upconversion fluorescence spectra of Er3+/-Yb3+-codoped natrium-gallium-germanium-bismuth glasses are measured and investigated. The intense green (533 and 549 nm) and red (672 nm) emission bands were simultaneously observed at room temperature. The quadratic dependence of the green and red emission on excitation power indicates that the two-photon absorption processes occur. The influence of Ga2C3 on upconversion intensity is investigated. The intensity of green emissions increases slowly with increasing Ga2O3 content, while the intensity of red emission increases significantly. The possible upconversion mechanisms for these glasses have also been discussed. The maximum phonon energy of the glasses determined based on the infrared (IR) spectral analysis is as low as 740 cm(-1). The studies indicate that Bi2O3-GeO2-Ga2O3-Na2O glasses may be potential materials for developing upconversion optical devices (c) 2006 Published by Elsevier B.V.
Resumo:
Em geral, o efeito magnetocalórico (EMC) é caracterizado pela variação adiabática da temperatura (ΔTad) e a variação isotérmica da entropia (ΔST) sob variações do campo magnético. Devido as aplicações tecnológicas do EMC na refrigeração magnética, que não apresentam efeitos perigosos para o meio ambiente e tem o potencial para reduzir o consumo de energia, os estudos sobre o EMC tem crescido ao longo dos anos . Neste trabalho, estudamos as propriedades magnéticas e magnetocalóricos da série Gd (1-Y) Pr (Y) Ni2 com Y = 0; 0,25; 0,5; 0,75 e 1 A série dos compostos RNi2 compostos cristalizam na fase de Laves cúbico C15, o que torna o Campo Elétrico Cristalino cúbico um quadro adequado para descrever a anisotropia magnética sobre estes compostos . Além do modelo hamiltoniano inclui contribuições do efeito Zeeman e as interações de troca indireta entre Gd-Gd, Gd-Pr e íons Pr-Pr. Vale a pena notar que o GdNi2 apresenta um arranjo ferromagnético com temperatura de transição de cerca de 78 K e o composto PrNi2 é paramagnético. Os potenciais magnetocalóricos foram calculados e comparados com os dados experimentais. Além disso, investigamos a influência da direção do campo magnético sobre as quantidades magnéticas e no EMC investigada.
Resumo:
Er-Si-O (Er2SiO5) crystalline films are fabricated by the spin-coating and subsequent annealing process. The fraction of erbium is estimated to be 21.5 at% based on Rutherford backscattering measurement. X-ray diffraction pattern indicates that the Er-Si-O films are similar to Er2SiO5 compound in the crystal structure. The fine structure of room-temperature photoluminescence of Er3+-related transitions suggests that Er has a local environment similar to the Er-O-6 octahedron. Our preliminary results show that the intensity of 1.53 mu m emission is enhanced by a factor of seven after nitrogen plasma treatment by NH3 gas with subsequent post-annealing. The full-width at half-maximum of 1.53 pm emission peak increases from 7.5 to 12.9 nm compared with that of the untreated one. Nitrogen plasma treatment is assumed to tailor Er3+ local environment, increasing the oscillator strength of transitions and thus the excitation/emission cross-section. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The thesis presented the fabrication and characterisation of polymer optical fibers in their applications as optical amplifier and smart sensors.Optical polymers such as PMMA are found to be a very good host material due to their ability to incorporate very high concentration of optical gain media like fluorescent dyes and rare earth compounds. High power and high gain optical amplification in organic dye-doped polymer optical fibers is possible due to extremely large emission cross sections of oyes. Dye doped (Rhodamine 6G) optical fibers were fabricated by using indigenously developed polymer optical fiber drawing tower. Loss characterization of drawn dye doped fibers was carried out using side illumination technique. The advantage of the above technique is that it is a nondestructive method and can also be used for studying the uniformity in fiber diameter and doping. Sensitivity of the undoped polymer fibers to temperature and microbending were also studied in its application in smart sensors.Optical amplification studies using the dye doped polymer optical fibers were carried out and found that an amplification of l8dB could be achieved using a very short fiber of length lOcm. Studies were carried out in fibers with different dye concentrations and diameter and it was observed that gain stability was achieved at relatively high dye concentrations irrespective of the fiber diameter.Due to their large diameter, large numerical aperture, flexibility and geometrical versatility of polymer optical fibers it has a wide range of applications in the field of optical sensing. Just as in the case of conventional silica based fiber optic sensors, sensing techniques like evanescent wave, grating and other intensity modulation schemes can also be efficiently utilized in the case of POF based sensors. Since polymer optical fibers have very low Young's modulus when compared to glass fibers, it can be utilized for sensing mechanical stress and strain efficiently in comparison with its counterpart. Fiber optic sensors have proved themselves as efficient and reliable devices to sense various parameters like aging, crack formation, weathering in civil structures. A similar type of study was carried out to find the setting characteristics of cement paste used for constructing civil structures. It was found that the measurements made by using fiber optic sensors are far more superior than that carried out by conventional methods. More over,POF based sensors were found to have more sensitivity as well.
Resumo:
High energy band gap hosts doped with lanthanide ions are suitable for optical devices applications To study the potential of Ta(2)O(5) as a host compound pure and Eu(2)O(3)-doped Ta(2)O(5) crystal fibers were grown by the laser-heated pedestal growth technique in diameters ranging from 250 to 2600 pm and in lengths of up to 50 mm The axial temperature gradient at the solid/liquid interface of pure Ta(2)O(5) fibers revealed a critical diameter of 2200 gm above which the fiber cracks X-ray diffraction measurements of the pure Ta(2)O(5) single crystals showed a monoclinic symmetry and a growth direction of [1 (1) over bar 0] An analysis of the pulling rate as a function of the fiber diameter for Eu(2)O(3)-doped Ta(2)O(5) fibers indicated a well defined region in which constitutional supercooling is absent Photoluminescence measurements of pure Ta(2)O(5) crystals using excitation above the band gap (3 8 eV) were dominated by a broad unstructured green band that peaked at 500 nm Three Eu(3+)-related optical centers were identified in the doped samples with nominal concentrations exceeding 1 mol% Two of these centers were consistent with the ion in the monoclinic phase with different oxygen coordinations The third one was visible in the presence of the triclinic phase (C) 2010 Elsevier B V All rights reserved
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)