892 resultados para Random Pulse Width Modulation, Random Band Hysteresis Current Control, AC Motor Drives
Resumo:
We demonstrate a CW random distributed feedback Raman fiber laser operating in a 1.2 μm spectral band. The laser generates up to 3.8 W of the quasi-CW radiation at 1175 nm with the narrow spectrum of 1 nm. Conversion efficiency reaches 60%. Up to 1 W is generated at the second Stokes wavelength of 1242 nm. It is shown that the generation spectrum of RDFB Raman fiber laser is much narrower than the spectrum in the system without a weak random feedback. © 2011 Optical Society of America.
Resumo:
This dissertation explores the complex interactions between organizational structure and the environment. In Chapter 1, I investigate the effect of financial development on the formation of European corporate groups. Since cross-country regressions are hard to interpret in a causal sense, we exploit exogenous industry measures to investigate a specific channel through which financial development may affect group affiliation: internal capital markets. Using a comprehensive firm-level dataset on European corporate groups in 15 countries, we find that countries
with less developed financial markets have a higher percentage of group affiliates in more capital intensive industries. This relationship is more pronounced for young and small firms and for affiliates of large and diversified groups. Our findings are consistent with the view that internal capital markets may, under some conditions, be more efficient than prevailing external markets, and that this may drive group affiliation even in developed economies. In Chapter 2, I bridge current streams of innovation research to explore the interplay between R&D, external knowledge, and organizational structure–three elements of a firm’s innovation strategy which we argue should logically be studied together. Using within-firm patent assignment patterns,
we develop a novel measure of structure for a large sample of American firms. We find that centralized firms invest more in research and patent more per R&D dollar than decentralized firms. Both types access technology via mergers and acquisitions, but their acquisitions differ in terms of frequency, size, and i\ntegration. Consistent with our framework, their sources of value creation differ: while centralized firms derive more value from internal R&D, decentralized firms rely more on external knowledge. We discuss how these findings should stimulate more integrative work on theories of innovation. In Chapter 3, I use novel data on 1,265 newly-public firms to show that innovative firms exposed to environments with lower M&A activity just after their initial public offering (IPO) adapt by engaging in fewer technological acquisitions and
more internal research. However, this adaptive response becomes inertial shortly after IPO and persists well into maturity. This study advances our understanding of how the environment shapes heterogeneity and capabilities through its impact on firm structure. I discuss how my results can help bridge inertial versus adaptive perspectives in the study of organizations, by
documenting an instance when the two interact.
Resumo:
By Monte Carlo simulations, we study the character of the spinglass (SG) phase in dense disordered packings of magnetic nanoparticles (NPs). We focus on NPs which have large uniaxial anisotropies and can be well represented as Ising dipoles. Dipoles are placed on SC lattices and point along randomly oriented axes. From the behaviour of a SG correlation length we determine the transition temperature Tc between the paramagnetic and a SG phase. For temperatures well below Tc we find distributions of the SG overlap parameter q that are strongly sample-dependent and exhibit several spikes. We find that the average width of spikes, and the fraction of samples with spikes higher than a certain threshold does not vary appreciably with the system sizes studied. We compare these results with the ones found previously for 3D site-diluted systems of parallel Ising dipoles and with the behaviour of the Sherrington-Kirkpatrick model.
Resumo:
Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.
Resumo:
This paper presents dynamic hysteresis band height control to reduce the overshoot and undershoot issue on output voltage caused by load change. The converters in this study are Boost and Positive Buck-Boost (PBB) converters. PBB has been controlled to work in a step up conversion and avoid overshoot when load is changed. Simulation and experimental results have been presented to verify the proposed method.
Resumo:
Random Indexing K-tree is the combination of two algorithms suited for large scale document clustering.
Resumo:
A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.
Resumo:
We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique—thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metalfilm or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surfacethermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of ∼100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surfacethermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surfacepatterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
This paper describes the approach taken to the clustering task at INEX 2009 by a group at the Queensland University of Technology. The Random Indexing (RI) K-tree has been used with a representation that is based on the semantic markup available in the INEX 2009 Wikipedia collection. The RI K-tree is a scalable approach to clustering large document collections. This approach has produced quality clustering when evaluated using two different methodologies.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.