957 resultados para Radio circuits


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O nome de Claude Elwood Shannon não é totalmente estranho aos pesquisadores de Comunicação Social. No entanto, parte de sua importância para a história da comunicação no século XX é pouco conhecida. Sua dissertação de mestrado e o artigo dela derivado (A Symbolic Analysis of Relay and Switching Circuits) foram essenciais para que o computador se tornasse uma máquina de comunicação e, conseqüentemente, penetrasse em nossa sociedade na forma como ocorre hoje. Este artigo revisa o primeiro grande trabalho de Shannon e explicita sua participação no contexto atual da comunicação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed-signal and analog design on a pre-diffused array is a challenging task, given that the digital array is a linear matrix arrangement of minimum-length transistors. To surmount this drawback a specific discipline for designing analog circuits over such array is required. An important novel technique proposed is the use of TAT (Trapezoidal Associations of Transistors) composite transistors on the semi-custom Sea-Of-Transistors (SOT) array. The analysis and advantages of TAT arrangement are extensively analyzed and demonstrated, with simulation and measurement comparisons to equivalent single transistors. Basic analog cells were also designed as well in full-custom and TAT versions in 1.0mm and 0.5mm digital CMOS technologies. Most of the circuits were prototyped in full-custom and TAT-based on pre-diffused SOT arrays. An innovative demonstration of the TAT technique is shown with the design and implementation of a mixed-signal analog system, i. e., a fully differential 2nd order Sigma-Delta Analog-to-Digital (A/D) modulator, fabricated in both full-custom and SOT array methodologies in 0.5mm CMOS technology from MOSIS foundry. Three test-chips were designed and fabricated in 0.5mm. Two of them are IC chips containing the full-custom and SOT array versions of a 2nd-Order Sigma-Delta A/D modulator. The third IC contains a transistors-structure (TAT and single) and analog cells placed side-by-side, block components (Comparator and Folded-cascode OTA) of the Sigma-Delta modulator.