969 resultados para Radiation dose reduction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid crystals (LCs) represent a challenging group of materials for direct transmission electron microscopy (TEM) studies due to the complications in specimen preparation and the severe radiation damage. In this paper, we summarize a series of specimen preparation methods, including thin film and cryo-sectioning approaches, as a comprehensive toolset enabling high-resolution direct cryo-TEM observation of a broad range of LCs. We also present comparative analysis using cryo-TEM and replica freeze-fracture TEM on both thermotropic and lyotropic LCs. In addition to the revisits of previous practices, some new concepts are introduced, e.g., suspended thermotropic LC thin films, combined high-pressure freezing and cryo-sectioning of lyotropic LCs, and the complementary applications of direct TEM and indirect replica TEM techniques. The significance of subnanometer resolution cryo-TEM observation is demonstrated in a few important issues in LC studies, including providing direct evidences for the existence of nanoscale smectic domains in nematic bent-core thermotropic LCs, comprehensive understanding of the twist-bend nematic phase, and probing the packing of columnar aggregates in lyotropic chromonic LCs. Direct TEM observation opens ways to a variety of TEM techniques, suggesting that TEM (replica, cryo, and in situ techniques), in general, may be a promising part of the solution to the lack of effective structural probe at the molecular scale in LC studies. Microsc. Res. Tech. 77:754-772, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND To determine the 5-year outcome after high-dose-rate brachytherapy (HDR-BT) as a monotherapy. METHODS Between 10/2003 and 06/2006, 36 patients with low (28) and intermediate (8) risk prostate cancer were treated by HDR-BT monotherapy. All patients received one implant and 4 fractions of 9.5 Gy within 48 hours for a total prescribed dose (PD) of 38 Gy. Five patients received concomitant androgen deprivation therapy (ADT). Toxicity was scored according to the common terminology criteria for adverse events from the National Cancer Institute (CTCAE) version 3.0. Biochemical recurrence was defined according to the Phoenix criteria and analyzed using the Kaplan Meier method. Predictors for late grade 3 GU toxicity were analyzed using univariate and multivariate Cox regression analyses. RESULTS The median follow-up was 6.9 years (range, 1.5-8.0 years). Late grade 2 and 3 genitourinary (GU) toxicity was observed in 10 (28%) and 7 (19%) patients, respectively. The actuarial proportion of patients with late grade 3 GU toxicity at 5 years was 17.7%. Late grade 2 and 3 gastrointestinal (GI) toxicities were not observed. The crude erectile function preservation rate in patients without ADT was 75%. The 5 year biochemical recurrence-free survival (bRFS) rate was 97%. Late grade 3 GU toxicity was associated with the urethral volume (p = 0.001) and the urethral V120 (urethral volume receiving ≥120% of the PD; p = 0.0005) after multivariate Cox regression. CONCLUSIONS After HDR-BT monotherapy late grade 3 GU was observed relatively frequently and was associated with the urethral V120. GI toxicity was negligible, the erectile function preservation rate and the bRFS rate was excellent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Exposure to medium or high doses of ionizing radiation is a known risk factor for cancer in children. The extent to which low dose radiation from natural sources contributes to the risk of childhood cancer remains unclear. OBJECTIVES In a nationwide census-based cohort study, we investigated whether the incidence of childhood cancer was associated with background radiation from terrestrial gamma and cosmic rays. METHODS Children aged <16 years in the Swiss National Censuses in 1990 and 2000 were included. The follow-up period lasted until 2008 and incident cancer cases were identified from the Swiss Childhood Cancer Registry. A radiation model was used to predict dose rates from terrestrial and cosmic radiation at locations of residence. Cox regression models were used to assess associations between cancer risk and dose rates and cumulative dose since birth. RESULTS Among 2,093,660 children included at census, 1,782 incident cases of cancer were identified including 530 with leukemia, 328 with lymphoma, and 423 with a tumor of the central nervous system (CNS). Hazard ratios for each mSv increase in cumulative dose of external radiation were 1.03 (95% CI: 1.01, 1.05) for any cancer, 1.04 (1.00, 1.08) for leukemia, 1.01 (0.96, 1.05) for lymphoma, and 1.04 (1.00, 1.08) for CNS tumors. Adjustment for a range of potential confounders had little effect on the results. CONCLUSIONS Our study suggests that background radiation may contribute to the risk of cancer in children including leukemia and CNS tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Deep molecular response (MR(4.5)) defines a subgroup of patients with chronic myeloid leukemia (CML) who may stay in unmaintained remission after treatment discontinuation. It is unclear how many patients achieve MR(4.5) under different treatment modalities and whether MR(4.5) predicts survival. PATIENTS AND METHODS Patients from the randomized CML-Study IV were analyzed for confirmed MR(4.5) which was defined as ≥ 4.5 log reduction of BCR-ABL on the international scale (IS) and determined by reverse transcriptase polymerase chain reaction in two consecutive analyses. Landmark analyses were performed to assess the impact of MR(4.5) on survival. RESULTS Of 1,551 randomly assigned patients, 1,524 were assessable. After a median observation time of 67.5 months, 5-year overall survival (OS) was 90%, 5-year progression-free-survival was 87.5%, and 8-year OS was 86%. The cumulative incidence of MR(4.5) after 9 years was 70% (median, 4.9 years); confirmed MR(4.5) was 54%. MR(4.5) was reached more quickly with optimized high-dose imatinib than with imatinib 400 mg/day (P = .016). Independent of treatment approach, confirmed MR(4.5) at 4 years predicted significantly higher survival probabilities than 0.1% to 1% IS, which corresponds to complete cytogenetic remission (8-year OS, 92% v 83%; P = .047). High-dose imatinib and early major molecular remission predicted MR(4.5). No patient with confirmed MR(4.5) has experienced progression. CONCLUSION MR(4.5) is a new molecular predictor of long-term outcome, is reached by a majority of patients treated with imatinib, and is achieved more quickly with optimized high-dose imatinib, which may provide an improved therapeutic basis for treatment discontinuation in CML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To find a threshold body weight (BW) below 100 kg above which computed tomography pulmonary angiography (CTPA) using reduced radiation and a reduced contrast material (CM) dose provides significantly impaired quality and diagnostic confidence compared with standard-dose CTPA. METHODS In this prospectively randomised study of 501 patients with suspected pulmonary embolism and BW <100 kg, 246 were allocated into the low-dose group (80 kVp, 75 ml CM) and 255 into the normal-dose group (100 kVp, 100 ml CM). Contrast-to-noise ratio (CNR) in the pulmonary trunk was calculated. Two blinded chest radiologists independently evaluated subjective image quality and diagnostic confidence. Data were compared between the normal-dose and low-dose groups in five BW subgroups. RESULTS Vessel attenuation did not differ between the normal-dose and low-dose groups within each BW subgroup (P = 1.0). The CNR was higher with the normal-dose compared with the low-dose protocol (P < 0.006) in all BW subgroups except for the 90-99 kg subgroup (P = 0.812). Subjective image quality and diagnostic confidence did not differ between CT protocols in all subgroups (P between 0.960 and 1.0). CONCLUSIONS Subjective image quality and diagnostic confidence with 80 kVp CTPA is not different from normal-dose protocol in any BW group up to 100 kg. KEY POINTS • 80 kVp CTPA is safe in patients weighing <100 kg • Reduced radiation and iodine dose still provide high vessel attenuation • Image quality and diagnostic confidence with low-dose CTPA is good • Diagnostic confidence does not deteriorate in obese patients weighing <100 kg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND High-dose benzodiazepine (BZD) dependence is associated with a wide variety of negative health consequences. Affected individuals are reported to suffer from severe mental disorders and are often unable to achieve long-term abstinence via recommended discontinuation strategies. Although it is increasingly understood that treatment interventions should take subjective experiences and beliefs into account, the perceptions of this group of individuals remain under-investigated. METHODS We conducted an exploratory qualitative study with 41 adult subjects meeting criteria for (high-dose) BZD-dependence, as defined by ICD-10. One-on-one in-depth interviews allowed for an exploration of this group's views on the reasons behind their initial and then continued use of BZDs, as well as their procurement strategies. Mayring's qualitative content analysis was used to evaluate our data. RESULTS In this sample, all participants had developed explanatory models for why they began using BZDs. We identified a multitude of reasons that we grouped into four broad categories, as explaining continued BZD use: (1) to cope with symptoms of psychological distress or mental disorder other than substance use, (2) to manage symptoms of physical or psychological discomfort associated with somatic disorder, (3) to alleviate symptoms of substance-related disorders, and (4) for recreational purposes, that is, sensation-seeking and other social reasons. Subjects often considered BZDs less dangerous than other substances and associated their use more often with harm reduction than as recreational. Specific obtainment strategies varied widely: the majority of participants oscillated between legal and illegal methods, often relying on the black market when faced with treatment termination. CONCLUSIONS Irrespective of comorbidity, participants expressed a clear preference for medically related explanatory models for their BZD use. We therefore suggest that clinicians consider patients' motives for long-term, high-dose BZD use when formulating treatment plans for this patient group, especially since it is known that individuals are more compliant with approaches they perceive to be manageable, tolerable, and effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Standard dose of external beam radiotherapy seems to be insufficient for satisfactory control of loco-regionally advanced cervical cancer. Aim of our study is to evaluate the outcome as well as early and chronic toxicities in patients with loco-regionally advanced cervical cancer, treated with dose escalated intensity modulated radiotherapy (IMRT) combined with cisplatin chemotherapy. MATERIAL AND METHODS Thirty-nine patients with cervical carcinoma FIGO stage IB2 - IVA were treated with curative intent between 2006 and 2010. The dose of 50.4 Gy was prescribed to the elective pelvic nodal volume. Primary tumors < 4 cm in diameter (n = 6; 15.4 %) received an external beam radiotherapy (EBRT) boost of 5.4 Gy, primary tumors > 4 cm in diameter (n = 33; 84.6 %) received an EBRT boost of 9 Gy. Patients with positive lymph nodes detected with (18)FDG-PET/CT (n = 22; 56.4 %) received a boost to a total dose of 59.4 - 64.8 Gy. The para-aortic region was included in the radiation volume in 8 (20.5 %) patients and in 5 (12.8 %) patients the para-aortic macroscopic lymph nodes received an EBRT boost. IMRT was followed with a 3D planned high dose rate intrauterine brachytherapy given to 36 (92.3 %) patients with a total dose ranging between 15-18 Gy in three fractions (single fraction: 4-6.5 Gy). Patients without contraindications (n = 31/79.5 %) received concomitantly a cisplatin-based chemotherapy (40 mg/kg) weekly. Toxicities were graded according to the common terminology criteria for adverse events (CTCAE v 4.0). RESULTS Mean overall survival for the entire cohort was 61.1 months (±3.5 months). Mean disease free survival was 47.2 months (±4.9 months) and loco-regional disease free survival was 55.2 months (±4.4 months). 65 % of patients developed radiotherapy associated acute toxicities grade 1, ca. 30 % developed toxicities grade 2 and just two (5.2 %) patients developed grade 3 toxicities, one acute diarrhea and one acute cystitis. 16 % of patients had chronic toxicities grade 1, 9 % grade 2 and one patient (2.6 %) toxicities grade 3 in the form of vaginal dryness. CONCLUSION Dose escalated IMRT appears to have a satisfactory outcome with regards to mean overall survival, disease free and loco-regional disease free survival, whereas the treatment-related toxicities remain reasonably low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND High-dose benzodiazepine dependence constitutes a major clinical concern. Although withdrawal treatment is recommended, it is unsuccessful for a significant proportion of affected patients. More recently, a benzodiazepine maintenance approach has been suggested as an alternative for patients' failing discontinuation treatment. While there is some data supporting its effectiveness, patients' perceptions of such an intervention have not been investigated. METHODS An exploratory qualitative study was conducted among a sample of 41 high-dose benzodiazepine (BZD)-dependent patients, with long-term use defined as doses equivalent to more than 40 mg diazepam per day and/or otherwise problematic use, such as mixing substances, dose escalation, recreational use, or obtainment by illegal means. A qualitative content analysis approach was used to evaluate findings. RESULTS Participants generally favored a treatment discontinuation approach with abstinence from BZD as its ultimate aim, despite repeated failed attempts at withdrawal. A maintenance treatment approach with continued prescription of a slow-onset, long-acting agonist was viewed ambivalently, with responses ranging from positive and welcoming to rejection. Three overlapping themes of maintenance treatment were identified: "Only if I can try to discontinue…and please don't call it that," "More stability and less criminal activity…and that is why I would try it," and "No cure, no brain and no flash…and thus, just for everybody else!" CONCLUSIONS Some patients experienced slow-onset, long-acting BZDs as having stabilized their symptoms and viewed these BZDs as having helped avoid uncontrolled withdrawal and abstain from criminal activity. We therefore encourage clinicians to consider treatment alternatives if discontinuation strategies fail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer death. However, poor survival using conventional therapies fuel the search for more rational interventions. The objective of this study was to design and implement a 4HPR-radiation interaction model in NSCLC, employing a traditional clinical modality (radiation), a relatively new, therapeutically unexplored agent (4HPR) and rationally combining them based on molecular mechanistic findings pertaining to their interactions. To test the hypothesis that 4HPR sensitizes cells to radiation-induced cell death via G2+M accumulation, we designed a working model consisting of H522 adenocarcinoma cells (p53, K-ras mutated) derived from an NSCLC patient; 4HPR at concentrations up to 10 μM; and X radiation up to 6 Gy generated by a patient-dedicated Phillips RT-250 X ray unit at 250 KV, 15 mA, 1.85 Gy/min. We found that 4HPR produced time- and dose-dependent morphological changes, growth inhibition, and DNA damage-inducing enhancement of reactive oxygen species. A transient G2+M accumulation of cells maximal at 24 h of continuous 4HPR exposure was used for irradiation time scheduling. Our data demonstrated enhanced cell death (both apoptotic and necrotic) in irradiated cells pre-treated with 4HPR versus those with either stressor alone. 4HPR's effect of increased NSCLC cells' radioresponse was confirmed by clonogenic assay. To explore these practical findings from a molecular mechanistic perspective, we further investigated and showed that levels of cyclin B1 and p34cdc2 kinase—both components of the mitosis promoting factor (MPF) regulating the G2/M transition—did not change following 4HPR treatment. Likewise, cdc25C phosphatase was not altered. However, enhanced p34cdc2 phosphorylation on its Thr14Tyr15 residues—indicative of its inactivation and increased expression of MPF negative regulators chk1 and wee1 kinases—were supportive of explaining 4HPR-treated cells' accumulation. Hence, p34cdc2 phosphorylation, chk1, and wee1 warrant further evaluation as potential molecular targets for 4HPR-X radiation combination. In summary, we (1) demonstrated that 4HPR not only induces cell death by itself, but also increases NSCLC cells' subsequent radioresponse, indicative of potential clinical applicability, and (2) for the first time, shed light on deciphering 4HPR-X radiation molecular mechanisms of interaction, including the finding of 4HPR's role as a p34cdc2 inactivator via Thr14Tyr15 phosphorylation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intracavitary brachytherapy (ICB) combined with external beam irradiation for treatment of cervical cancer is highly successful in achieving local control. The M.D. Anderson Cancer Center employs Fletcher Suit Delclos (FSD) applicators. FSD applicators contain shields to limit dose to critical structures. Dosimetric evaluation of ICB implants is limited to assessing dose at reference points. These points serve as surrogates for treatment intensity and critical structure dose. Several studies have mentioned that the ICRU38 reference points inadequately characterize the dose distribution. Also, the ovoid shields are rarely considered in dosimetry. ^ The goal of this dissertation was to ascertain the influence of the ovoid shields on patient dose distributions. Monte Carlo dosimetry (MCD) was applied to patient computed tomography(CT) scans. These data were analyzed to determine the effect of the shields on dose to standard reference points and the bladder and rectum. The hypothesis of this work is that the ICRU38 bladder and rectal points computed conventionally are not clinically acceptable surrogates for the maximum dose points as determined by MCD. ^ MCD was applied to the tandem and ovoids. The FSD ovoids and tandem were modeled in a single input file that allowed dose to be calculated for any patient. Dose difference surface histograms(DDSH) were computed for the bladder and rectum. Reference point doses were compared between shielded and unshielded ovoids, and a commercial treatment planning system. ^ The results of this work showed the tandem tip screw caused a 33% reduction in dose. The ovoid shields reduced the dose by a maximum of 48.9%. DDSHs revealed on average 5% of the bladder surface area was spared 53 cGy and 5% of the rectal surface area was spared 195 cGy. The ovoid shields on average reduced the dose by 18% for the bladder point and 25% for the rectal point. The Student's t-test revealed the ICRU38 bladder and rectal points do not predict the maximum dose for these organs. ^ It is concluded that modeling the tandem and ovoid internal structures is necessary for accurate dose calculations, the bladder shielding segments may not be necessary, and that the ICRU38 bladder point is irrelevant. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is evidence that ultraviolet radiation (UVR) is increasing over certain locations on the Earth's surface. Of primary concern is the annual pattern of ozone depletion over Antarctica and the Southern Ocean. Reduction of ozone concentration selectively limits absorption of solar UV-B (290–320 nm), resulting in higher irradiance at the Earth's surface. The effects of ozone depletion on the human population and natural ecosystems, particularly the marine environment, are a matter of considerable concern. Indeed, marine plankton may serve as sensitive indicators of ozone depletion and UV-B fluctuations. Direct biological effects of UVR result from absorption of UV-B by DNA. Once absorbed, energy is dissipated by a variety of pathways, including covalent chemical reactions leading to the formation of photoproducts. The major types of photoproduct formed are cyclobutyl pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone dimer [(6-4)PD]. Marine plankton repair these photoproducts using light-dependent photoenzymatic repair or nucleotide excision repair. The studies here show that fluctuations in CPD concentrations in the marine environment at Palmer Station, Antarctica correlate well with ozone concentration and UV-B irradiance at the Earth's surface. A comparison of photoproduct levels in marine plankton and DNA dosimeters show that bacterioplankton display higher resistance to solar UVR than phytoplankton in an ozone depleted environment. DNA damage in marine microorganisms was investigated during two separate latitudinal transects which covered a total range of 140°. We observed the same pattern of change in DNA damage levels in dosimeters and marine plankton as measured using two distinct quantitative techniques. Results from the transects show that differences in photosensitivity exist in marine plankton collected under varying UVR environments. Laboratory studies of Antarctic bacterial isolates confirm that marine bacterioplankton possess differences in survival, DNA damage induction, and repair following exposure to UVR. Results from DNA damage measurements during ozone season, along a latitudinal gradient, and in marine bacterial isolates suggest that changes in environmental UVR correlate with changes in UV-B induced DNA damage in marine microorganisms. Differences in the ability to tolerate UVR stress under different environmental conditions may determine the composition of the microbial communities inhabiting those environments. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uveal melanoma is a rare but life-threatening form of ocular cancer. Contemporary treatment techniques include proton therapy, which enables conservation of the eye and its useful vision. Dose to the proximal structures is widely believed to play a role in treatment side effects, therefore, reliable dose estimates are required for properly evaluating the therapeutic value and complication risk of treatment plans. Unfortunately, current simplistic dose calculation algorithms can result in errors of up to 30% in the proximal region. In addition, they lack predictive methods for absolute dose per monitor unit (D/MU) values. ^ To facilitate more accurate dose predictions, a Monte Carlo model of an ocular proton nozzle was created and benchmarked against measured dose profiles to within ±3% or ±0.5 mm and D/MU values to within ±3%. The benchmarked Monte Carlo model was used to develop and validate a new broad beam dose algorithm that included the influence of edgescattered protons on the cross-field intensity profile, the effect of energy straggling in the distal portion of poly-energetic beams, and the proton fluence loss as a function of residual range. Generally, the analytical algorithm predicted relative dose distributions that were within ±3% or ±0.5 mm and absolute D/MU values that were within ±3% of Monte Carlo calculations. Slightly larger dose differences were observed at depths less than 7 mm, an effect attributed to the dose contributions of edge-scattered protons. Additional comparisons of Monte Carlo and broad beam dose predictions were made in a detailed eye model developed in this work, with generally similar findings. ^ Monte Carlo was shown to be an excellent predictor of the measured dose profiles and D/MU values and a valuable tool for developing and validating a broad beam dose algorithm for ocular proton therapy. The more detailed physics modeling by the Monte Carlo and broad beam dose algorithms represent an improvement in the accuracy of relative dose predictions over current techniques, and they provide absolute dose predictions. It is anticipated these improvements can be used to develop treatment strategies that reduce the incidence or severity of treatment complications by sparing normal tissue. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity. ^