958 resultados para REVERSE TRANSCRIPTION-PCR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the key mechanisms linking cell signaling and control of gene expression is reversible phosphorylation of transcription factors. FOXC2 is a forkhead transcription factor that is mutated in the human vascular disease lymphedema-distichiasis and plays an essential role in lymphatic vascular development. However, the mechanisms regulating FOXC2 transcriptional activity are not well understood. We report here that FOXC2 is phosphorylated on eight evolutionarily conserved proline-directed serine/threonine residues. Loss of phosphorylation at these sites triggers substantial changes in the FOXC2 transcriptional program. Through genome-wide location analysis in lymphatic endothelial cells, we demonstrate that the changes are due to selective inhibition of FOXC2 recruitment to chromatin. The extent of the inhibition varied between individual binding sites, suggesting a novel rheostat-like mechanism by which expression of specific genes can be differentially regulated by FOXC2 phosphorylation. Furthermore, unlike the wild-type protein, the phosphorylation-deficient mutant of FOXC2 failed to induce vascular remodeling in vivo. Collectively, our results point to the pivotal role of phosphorylation in the regulation of FOXC2-mediated transcription in lymphatic endothelial cells and underscore the importance of FOXC2 phosphorylation in vascular development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) are important dilators of the pulmonary circulation during the perinatal period. We compared the responses of pulmonary arteries (PA) and veins (PV) of newborn lambs to these peptides. ANP caused a greater relaxation of PA than of PV, and CNP caused a greater relaxation of PV than of PA. RIA showed that ANP induced a greater increase in cGMP content of PA than CNP. In PV, ANP and CNP caused a similar moderate increase in cGMP content. Receptor binding study showed more specific binding sites for ANP than for CNP in PA and more for CNP than for ANP in PV. Relative quantitative RT-PCR for natriuretic peptide receptor A (NPR-A) and B (NPR-B) mRNAs show that, in PA, NPR-A mRNA is more prevalent than NPR-B mRNA, whereas, in PV, NPR-B mRNA is more prevalent than NPR-A mRNA. In conclusion, in the pulmonary circulation, arteries are the major site of action for ANP, and veins are the major site for CNP. Furthermore, the differences in receptor abundance and the involvement of a cGMP-independent mechanism may contribute to the heterogeneous effects of the natriuretic peptides in PA and PV of newborn lambs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: We investigated whether mRNA levels of E2F1, a key transcription factor involved in proliferation, differentiation and apoptosis, could be used as a surrogate marker for the determination of breast cancer outcome. METHODS: E2F1 and other proliferation markers were measured by quantitative RT-PCR in 317 primary breast cancer patients from the Stiftung Tumorbank Basel. Correlations to one another as well as to the estrogen receptor and ERBB2 status and clinical outcome were investigated. Results were validated and further compared with expression-based prognostic profiles using The Netherlands Cancer Institute microarray data set reported by Fan and colleagues. RESULTS: E2F1 mRNA expression levels correlated strongly with the expression of other proliferation markers, and low values were mainly found in estrogen receptor-positive and ERBB2-negative phenotypes. Patients with low E2F1-expressing tumors were associated with favorable outcome (hazard ratio = 4.3 (95% confidence interval = 1.8-9.9), P = 0.001). These results were consistent in univariate and multivariate Cox analyses, and were successfully validated in The Netherlands Cancer Institute data set. Furthermore, E2F1 expression levels correlated well with the 70-gene signature displaying the ability of selecting a common subset of patients at good prognosis. Breast cancer patients' outcome was comparably predictable by E2F1 levels, by the 70-gene signature, by the intrinsic subtype gene classification, by the wound response signature and by the recurrence score. CONCLUSION: Assessment of E2F1 at the mRNA level in primary breast cancer is a strong determinant of breast cancer patient outcome. E2F1 expression identified patients at low risk of metastasis irrespective of the estrogen receptor and ERBB2 status, and demonstrated similar prognostic performance to different gene expression-based predictors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CREB-binding protein (CBP) is a large nuclear protein that regulates many signal transduction pathways and is involved in chromatin-mediated transcription. The translocation t(8;16)(p11;p13.3) consistently disrupts two genes: the CBP gene on chromosome band 16p13.3 and the MOZ gene on chromosome band 8p11. Although a fusion of these two genes as a result of the translocation is expected, attempts at detecting the fusion transcript by reverse transcriptase polymerase chain reaction (RT-PCR) have proven difficult; to date, only one in-frame CBP/MOZ fusion transcript has been reported. We therefore sought other reliable means of detecting CBP rearrangements. We applied fluorescence in situ hybridization (FISH) and Southern blot analyses to a series of AML patients with a t(8;16) and detected DNA rearrangements of both the CBP and the MOZ loci in all cases tested. All six cases examined for CBP rearrangements have breakpoints within a 13 kb breakpoint cluster region at the 5' end of the CBP gene. Additionally, we used a MOZ cDNA probe to construct a surrounding cosmid contig and detect DNA rearrangements in three t(8;16) cases, all of which display rearrangements within a 6 kb genomic fragment of the MOZ gene. We have thus developed a series of cosmid probes that consistently detect the disruption of the CBP gene in t(8;16) patients. These clones could potentially be used to screen other cancer-associated or congenital translocations involving chromosome band 16p13.3 as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We sought to assess the feasibility and reproducibility of performing tissue-based immune characterization of the tumor microenvironment using CT-compatible needle biopsy material. Three independent biopsies were obtained intraoperatively from one metastatic epithelial ovarian cancer lesion of 7 consecutive patients undergoing surgical cytoreduction using a 16-gauge core biopsy needle. Core specimens were snap-frozen and subjected to immunohistochemistry (IHC) against human CD3, CD4, CD8, and FoxP3. A portion of the cores was used to isolate RNA for 1) real-time quantitative (q)PCR for CD3, CD4, CD8, FoxP3, IL-10 and TGF-beta, 2) multiplexed PCR-based T cell receptor (TCR) CDR3 Vβ region spectratyping, and 3) gene expression profiling. Pearson's correlations were examined for immunohistochemistry and PCR gene expression, as well as for gene expression array data obtained from different tumor biopsies. Needle biopsy yielded sufficient tissue for all assays in all patients. IHC was highly reproducible and informative. Significant correlations were seen between the frequency of CD3+, CD8+ and FoxP3+ T cells by IHC with CD3ε, CD8A, and FoxP3 gene expression, respectively, by qPCR (r=0.61, 0.86, and 0.89; all p< 0.05). CDR3 spectratyping was feasible and highly reproducible in each tumor, and indicated a restricted repertoire for specific TCR Vβ chains in tumor-infiltrating T cells. Microarray gene expression revealed strong correlation between different biopsies collected from the same tumor. Our results demonstrate a feasible and reproducible method of immune monitoring using CT-compatible needle biopsies from tumor tissue, thereby paving the way for sophisticated translational studies during tumor biological therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alanine aminotransferase (ALT) plays an important role in amino acid metabolism and gluconeogenesis. The preference of carnivorous fish for protein amino acids instead of carbohydrates as a source of energy lead us to study the transcriptional regulation of the mitochondrial ALT (mALT) gene and to characterize the enzyme kinetics and modulation of mALT expression in the kidney of gilthead sea bream (Sparus aurata) under different nutritional and hormonal conditions. 5′-Deletion analysis of mALT promoter in transiently transfected HEK293 cells, site-directed mutagenesis and electrophoretic mobility shift assays allowed us to identify HNF4α as a new factor involved in the transcriptional regulation of mALT expression. Quantitative RT-PCR assays showed that starvation and the administration of streptozotocin (STZ) decreased HNF4α levels in the kidney of S. aurata, leading to the downregulation of mALT transcription. Analysis of the tissue distribution showed that kidney, liver, and intestine were the tissues with higher mALT and HNF4α expression. Kinetic analysis indicates that mALT enzyme is more efficient in catalyzing the conversion of L-alanine to pyruvate than the reverse reaction. From these results, we conclude that HNF4α transactivates the mALT promoter and that the low levels of mALT expression found in the kidney of starved and STZ-treated fish result from a decreased expression of HNF4α. Our findings suggest that the mALT isoenzyme plays a major role in oxidazing dietary amino acids, and points to ALT as a target for a biotechnological action to spare protein and optimize the use of dietary nutrients for fish culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through a combined approach integrating RNA-Seq, SNP-array, FISH and PCR techniques, we identified two novel t(15;21) translocations leading to the inactivation of RUNX1 and its partners SIN3A and TCF12. One is a complex t(15;21)(q24;q22), with both breakpoints mapped at the nucleotide level, joining RUNX1 to SIN3A and UBL7-AS1 in a patient with myelodysplasia. The other is a recurrent t(15;21)(q21;q22), juxtaposing RUNX1 and TCF12, with an opposite transcriptional orientation, in three myeloid leukemia cases. Since our transcriptome analysis indicated a significant number of differentially expressed genes associated with both translocations, we speculate an important pathogenetic role for these alterations involving RUNX1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in primary SS. SS18-SSX is shown to interact with TCF/LEF, TLE and HDAC but not β-catenin in vivo and to induce Wnt target gene expression by forming a complex containing promoter-bound TCF/LEF and HDAC but lacking β-catenin. Our observations provide a tumor-specific mechanistic basis for Wnt target gene induction in SS that can occur in the absence of Wnt ligand stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptase reverse - polymerase chain reaction (RT-PCR) and dot blot hybridization with digoxigenin-labeled probes were applied for the universal detection of Tospovirus species. The virus species tested were Tomato spotted wilt virus, Tomato chlorotic spot virus, Groundnut ringspot virus, Chrysanthemum stem necrosis virus, Impatiens necrotic spot virus, Zucchini lethal chlorosis virus, Iris yellow spot virus. Primers for PCR amplification were designed to match conserved regions of the tospovirus genome. RT-PCR using distinct primer combinations was unable to simultaneously amplify all tospovirus species and consistently failed to detect ZLCV and IYSV in total RNA extracts. However, all tospovirus species were detected by RT-PCR when viral RNA was used as template. RNA-specific PCR products were used as probes for dot hybridization. This assay with a M probe (directed to the G1/G2 gene) detected at low stringency conditions all Tospovirus species, except IYSV. At low stringency conditions, the L non-radioactive probe detected the seven Tospovirus species in a single assay. This method for broad spectrum detection can be potentially employed in quarantine services for indexing in vitro germplasm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twelve Brazilian isolates and one reference vaccine strain of avian infectious bronchitis virus (IBV) were propagated in embryonating chicken eggs. The entire S1 glycoprotein gene of these viruses was analysed by reverse-transcriptase-polymerase chain reaction and restriction fragment length polymorphism (RT-PCR-RFLP), using the restriction enzymes HaeIII, XcmI and BstyI. The RFLP patterns led to the classification of these isolates into five distinct genotypes: A, B, C, D and Massachusetts. Five of twelve isolates were grouped in Massachusetts genotype and the remaining seven viruses were classified into four distinct genotypes: A (2), B (2), C (2) or D (1). Such genotyping classification agreed with previous immunological analysis for most of these viruses, highlighting the occurrence of a relevant variability among the IBV strains that are circulating in Brazilian commercial poultry flocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (AML M3) is a well-defined subtype of leukemia with specific and peculiar characteristics. Immediate identification of t(15;17) or the PML/RARA gene rearrangement is fundamental for treatment. The objective of the present study was to compare fluorescent in situ hybridization (FISH), reverse transcriptase-polymerase chain reaction (RT-PCR) and karyotyping in 18 samples (12 at diagnosis and 6 after treatment) from 13 AML M3 patients. Bone marrow samples were submitted to karyotype G-banding, FISH and RT-PCR. At diagnosis, cytogenetics was successful in 10 of 12 samples, 8 with t(15;17) and 2 without. FISH was positive in 11/12 cases (one had no cells for analysis) and positivity varied from 25 to 93% (mean: 56%). RT-PCR was done in 6/12 cases and all were positive. Four of 8 patients with t(15;17) presented positive RT-PCR as well as 2 without metaphases. The lack of RT-PCR results in the other samples was due to poor quality RNA. When the three tests were compared at diagnosis, karyotyping presented the translocation in 80% of the tested samples while FISH and RT-PCR showed the PML/RARA rearrangement in 100% of them. Of 6 samples evaluated after treatment, 3 showed a normal karyotype, 1 persistence of an abnormal clone and 2 no metaphases. FISH was negative in 4 samples studied and 2 had no material for analysis. RT-PCR was positive in 4 (2 of which showed negative FISH, indicating residual disease) and negative in 2. When the three tests were compared after treatment, they showed concordance in 2 of 6 samples or, when there were not enough cells for all tests, concordance between karyotype and RT-PCR in one. At remission, RT-PCR was the most sensitive test in detecting residual disease, as expected (positive in 4/6 samples). An incidence of about 40% of 5' breaks and 60% of 3' breaks, i.e., bcr3 and bcr1/bcr2, respectively, was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to identify genes expressed in the pistil that may have a role in the reproduction process, we have established an expressed sequence tags project to randomly sequence clones from a Nicotiana tabacum stigma/style cDNA library. A cDNA clone (MTL-8) showing high sequence similarity to genes encoding glycine-rich RNA-binding proteins was chosen for further characterization. Based on the extensive identity of MTL-8 to the RGP-1a sequence of N. sylvestris, a primer was defined to extend the 5' sequence of MTL-8 by RT-PCR from stigma/style RNAs. The amplification product was sequenced and it was confirmed that MTL-8 corresponds to an mRNA encoding a glycine-rich RNA-binding protein. Two transcripts of different sizes and expression patterns were identified when the MTL-8 cDNA insert was used as a probe in RNA blots. The largest is 1,100 nucleotides (nt) long and markedly predominant in ovaries. The smaller transcript, with 600 nt, is ubiquitous to the vegetative and reproductive organs analyzed (roots, stems, leaves, sepals, petals, stamens, stigmas/styles and ovaries). Plants submitted to stress (wounding, virus infection and ethylene treatment) presented an increased level of the 600-nt transcript in leaves, especially after tobacco necrosis virus infection. In contrast, the level of the 1,100-nt transcript seems to be unaffected by the stress conditions tested. Results of Southern blot experiments have suggested that MTL-8 is present in one or two copies in the tobacco genome. Our results suggest that the shorter transcript is related to stress while the larger one is a flower predominant and nonstress-inducible messenger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloning of the T-cell receptor genes is a critical step when generating T-cell receptor transgenic mice. Because T-cell receptor molecules are clonotypical, isolation of their genes requires reverse transcriptase-assisted PCR using primers specific for each different Valpha or Vß genes or by the screening of cDNA libraries generated from RNA obtained from each individual T-cell clone. Although feasible, these approaches are laborious and costly. The aim of the present study was to test the application of the non-palindromic adaptor-PCR method as an alternative to isolate the genes encoding the T-cell receptor of an antigen-specific T-cell hybridoma. For this purpose, we established hybridomas specific for trans-sialidase, an immunodominant Trypanosoma cruzi antigen. These T-cell hybridomas were characterized with regard to their ability to secrete interferon-gamma, IL-4, and IL-10 after stimulation with the antigen. A CD3+, CD4+, CD8- interferon-gamma-producing hybridoma was selected for the identification of the variable regions of the T-cell receptor by the non-palindromic adaptor-PCR method. Using this methodology, we were able to rapidly and efficiently determine the variable regions of both T-cell receptor chains. The results obtained by the non-palindromic adaptor-PCR method were confirmed by the isolation and sequencing of the complete cDNA genes and by the recognition with a specific antibody against the T-cell receptor variable ß chain. We conclude that the non-palindromic adaptor-PCR method can be a valuable tool for the identification of the T-cell receptor transcripts of T-cell hybridomas and may facilitate the generation of T-cell receptor transgenic mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH)2D3 on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH)2D3 pretreatment, 1,25(OH)2D3 treatment, Dx treatment, and Dx and 1,25(OH)2D3 treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH)2D3 reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH)2D3 and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH)2D3might be useful as a novel HDAC2 activator in the treatment of asthma.