953 resultados para RAT EPITROCHLEARIS MUSCLE
Resumo:
Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
There is evidence that nitric oxide plays a role in the neurotransmitter balance within the basal ganglia and in the pathology of Parkinson`s disease. In the present work we investigated in striatal 6-hydroxydopamine (6-OHDA) lesioned rats the effects of a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG), given systemically on both the dopaminergic (DA) neuronal loss and the neuronal NOS cell density. We analyzed the DA neuronal loss through tyrosine hydroxylase immunohistochemistry (TH). The nitrergic system was evaluated using an antibody against the neuronal NOS (nNOS) isoform. Treatment with the L-NOARG significantly reduced 6-OHDA-induced dopaminergic damage in the dorsal striatum, ventral substantia nigra and lateral globus pallidus, but had no effects in the dorsal substantia nigra and in the cingulate cortex. Furthermore, L-NOARG reduced 6-OHDA-induced striatal increase, and substantia nigra compacta decrease, in the density of neuronal nitric oxide synthase positive cells. These results suggest that nitric oxide synthase inhibition may decrease the toxic effects of 6-OHDA on dopaminergic terminals and on dopamine cell bodies in sub-regions of the SN and on neuronal nitric oxide synthase cell density in the rat brain. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The research diagnostic criteria for temporomandibular disorders (RDC/TMD) are used for the classification of patients with temporomandibular disorders (TMD). Surface electromyography of the right and left masseter and temporalis muscles was performed during Maximum teeth clenching in 103 TMD patients subdivided according to the RDC/TMD into 3 non-overlapping groups: (a) 25 myogenous; (b) 61 arthrogenous; and (c) 17 psycogenous patients. Thirty-two control subjects matched for sex and age were also measured. During clenching, standardized total muscle activities (electromyographic potentials over time) significantly differed: 131.7 mu V/mu V s % in the normal subjects, 117.6 mu V/mu V s % in the myogenous patients, 105.3 mu V/mu V s % in the arthrogenous patients, 88.7 mu V/mu V s % in the psycogenous patients (p < 0.001, analysis of covariance). Symmetry in the temporalis muscles was larger in normal subjects (86.3%) and in myogenous patients (84.9%) than in arthrogenous (82.7%), and psycogenous patients (80.5%) (p=0.041). No differences were found for masseter muscle symmetry and torque coefficient (p>0.05). Surface electromyography of the masticatory muscles allowed an objective discrimination among different RDC/TMD subgroups. This evaluation could assist conventional clinical assessments. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objective. The aim of this study was to evaluate the biocompatibility of the root canal sealer Epiphany in rat subcutaneous tissues. Study design. Polyethylene tubes were filled with the sealer (I: Epiphany; II: photoactivated Epiphany; III: Epiphany associated with self-etch primer; IV: photoactivated Epiphany associated with primer; and V: control group) and later implanted into 4 different regions of the dorsum of 15 adult male rats (Rattus novergicus, Albinus Wistar). After 7, 21, and 42 days, 5 animals were killed, obtaining 4 samples per group, in addition to the control group, at each analyzed time. Results. In all periods, Epiphany induced a mild inflammatory reaction. However, in group II, in which the primer was not used, extensive necrosis and a moderate to intense inflammatory reaction were observed, mainly after 7 and 21 days. Conclusion. Epiphany sealer appears biocompatible when tested on rat subcutaneous tissues.
Resumo:
Background Distraction osteogenesis (DO) is a method of producing new bone directly from the osteotomy site by gradual traction of the divided bone fragments. Aim The purpose of the present study was to evaluate histomorphometrically whether acute DO would constitute a viable alternative to the conventional continuous distraction treatment and also to verify the capacity of a recombinant human BMP (rhBMP-2) associated with monoolein gel to stimulate bone formation in the acute distraction process. Materials and methods Forty-eight Wistar rats were assigned to three groups: Group 1, treated at a conventional continuous distraction rate (0.5 mm/day), Group 2, treated with acute distraction of 2.5 mm at the time of the surgical procedure, and Group 3, subjected to acute distraction associated with rhBMP-2. The animals from each experimental group were killed at the end of the second or fourth post-operative weeks and the volume fraction of newly formed bone trabeculae was estimated in histological images by a differential point-counting method. Results The results showed that after 2 and 4 weeks, bone volumes in the rhBMP-2 group were significantly higher than in the other groups (P < 0.05), but no significant difference was observed in the volume fraction of newly formed bone between the continuous and acute DO groups. Conclusion In conclusion, the study indicates that rhBMP-2 can enhance the bone formation at acute DO, which may potentially reduce the treatment period and complications related to the distraction procedure. To cite this article:Issa JPM, do Nascimento C, Lamano T, Iyomasa MM, Sebald W, de Albuquerque Jr RF. Effect of recombinant human bone morphogenetic protein-2 on bone formation in the acute distraction osteogenesis of rat mandibles.Clin. Oral Impl. Res. 20, 2009; 1286-1292.doi: 10.1111/j.1600-0501.2009.01799.x.
Resumo:
This is a study in the rat of the distribution of specific neurotransmitters in neurones projecting from the substantia nigra reticulata (SNR) to the ventrolateral (VL) and ventromedial (VM) thalamic nuclei. Individual axons projecting from the SNR to these thalamic nuclei have also been reconstructed following small injection of the anterograde tracer dextran biotin into the the SNR. Analysis of reconstructions revealed two populations of SNR neurones projecting onto the VL and VM thalamic nuclei. One group projects directly onto the VM and VL, and the other projects to the VM/VL and to the parafascicular nucleus. In another set of experiments Fluoro-Gold was injected into the VL/VM to label SNR projection neurones retrogradely, and immunohistochemistry was performed to determine the distribution of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), gamma -aminobutyric acid (GABA), and glutamate in Fluoro-Gold-labelled SNR projection neurones. Most SNR-VL/VM thalamic projection neurones were immunoreactive to acetylcholine or glutamate, whereas only 25% of the projection neurones were found to be immunoreactive to GABA. (C) 2001 Wiley-Liss, Inc.
Resumo:
K(V)LQT1 (K(V)LQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of K(V)LQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to K(V)LQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of K(V)LQT1 in crypt cells and surface epithelium. Expression of rK(V)LQT1 in Xenopus oocytes induced a typical delayed activated K+ current. that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that K(V)QT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis.
Resumo:
This work studied the structure-hepatic disposition relationships for cationic drugs of varying lipophilicity using a single-pass, in situ rat liver preparation. The lipophilicity among the cationic drugs studied in this work is in the following order: diltiazem. propranolol. labetalol. prazosin. antipyrine. atenolol. Parameters characterizing the hepatic distribution and elimination kinetics of the drugs were estimated using the multiple indicator dilution method. The kinetic model used to describe drug transport (the two-phase stochastic model) integrated cytoplasmic binding kinetics and belongs to the class of barrier-limited and space-distributed liver models. Hepatic extraction ratio (E) (0.30-0.92) increased with lipophilicity. The intracellular binding rate constant (k(on)) and the equilibrium amount ratios characterizing the slowly and rapidly equilibrating binding sites (K-S and K-R) increase with the lipophilicity of drug (k(on) : 0.05-0.35 s(-1); K-S : 0.61-16.67; K-R : 0.36-0.95), whereas the intracellular unbinding rate constant (k(off)) decreases with the lipophilicity of drug (0.081-0.021 s(-1)). The partition ratio of influx (k(in)) and efflux rate constant (k(out)), k(in)/k(out), increases with increasing pK(a) value of the drug [from 1.72 for antipyrine (pK(a) = 1.45) to 9.76 for propranolol (pK(a) = 9.45)], the differences in k(in/kout) for the different drugs mainly arising from ion trapping in the mitochondria and lysosomes. The value of intrinsic elimination clearance (CLint), permeation clearance (CLpT), and permeability-surface area product (PS) all increase with the lipophilicity of drug [CLint (ml . min(-1) . g(-1) of liver): 10.08-67.41; CLpT (ml . min(-1) . g(-1) of liver): 10.80-5.35; PS (ml . min(-1) . g(-1) of liver): 14.59-90.54]. It is concluded that cationic drug kinetics in the liver can be modeled using models that integrate the presence of cytoplasmic binding, a hepatocyte barrier, and a vascular transit density function.
Resumo:
Background: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. Methods: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). Results: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. Conclusions: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.
Resumo:
Nude rats bearing melanomas on their hindlimbs were treated by isolated limb infusion (ILI) with increasing doses (7.5-400 mug/ml) of melphalan. The response of tumours to treatment at the end of the observation period was graded, according to diameter, as complete response (CR), partial response (PR), no change (NC) or progressive disease (PD). No linear relationship between the dose of melphalan and the tumour response was observed. All doses above a threshold of 15 mug/ml achieved a PR or CR. The achievement of CR was not related to increased dose. Two major implications arise from this work. Firstly, the typically two-to three-fold increase in cytotoxic drug concentration given in high dose chemotherapy compared with standard drug concentration may not be sufficient to produce the expected increase in tumour response and possibly survival, and the controversial results of high dose chemotherapy in different studies may thus be explained. Secondly, since an increase in melphalan dose above a certain threshold does not greatly increase tumour response, the use of combination therapies would seem to be more likely to be effective than increased chemotherapeutic drug doses in achieving better tumour responses.
Resumo:
Glucose loading of rats made thiamin deficient by dietary deprivation of thiamin and the administration of pyrithiamin (40 mug/100 g, i.p.) precipitates an acute neuropathy, a model of Wernicke's encephalopathy in man (Zimitat and Nixon, Metab. Brain Dis. 1999;14:1-20). Immunohistochemical detection of Fos proteins was used as a marker to identify neuronal populations in the thiamin-deficient rat brain affected by glucose loading. As thiamin deficiency progressed, the extent and intensity of Fos-Like immunoreactivity (FLI) in brain structures typically affected by thiamin deficiency (the thalamus, mammillary bodies, inferior colliculus, vestibular nucleus and inferior olives) were markedly increased when compared to thiamin-replete controls. Glucose loading for 1-3 days further increased the intensity of FLI in these same regions, consistent with a dependence of Fos expression on carbohydrate metabolism as well as on thiamin deficiency. The timed acute changes that follow a bolus glucose load administered to thiamin-deficient animals may provide a sequential account of events in the pathogenesis of brain damage in this model of Wernicke's encephalopathy. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.
Resumo:
A body of published evidence suggests that a significant portion of enamel matrix protein synthesized by ameloblasts localises in the lysosomal-endosomal organelles of these enamel organ cells. Little is known regarding the lysosomal proteolytic activities during amelogenesis. The aims of this study were to detect and measure the activities of lysosomal peptidases cathepsin B (E.C. 3.4.22.1) and dipeptidyl-peptidase II (E.C. 3.4.14.2) in the enamel organ of the rat incisor and to ascertain whether rat enamel matrix proteins are degraded by these peptidases in vitro. Whole enamel organs were dissected from rat mandibular incisors. Enamel protein was also collected from the rat teeth. Analysis indicated that the rat incisor enamel organs contained specific activities of both dipeptidyl-peptidase II and cathepsin B at levels comparable with those of kidney which is rich in both these lysosomal peptidases. Gel electrophoresis and immunoblotting demonstrated that both cathepsin B and dipeptidyl-peptidase II were able to substantially degrade the rat enamel proteins in vitro. Based on these observations, we propose that lysosomal proteases have roles in amelogenesis in the intracellular degradation of amelogenins.
Resumo:
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Victor R. Preedy and Junko Adachi. The presentations were (1) Alcoholic myopathy: Past, present and future, by Timothy J. Peters and Victor R. Preedy; (2) Protein adducts in the type I and II fiber-predominant muscles of the ethanol-fed rat, by Simon Worrall, Seppo Parkkila, and Onni Niemela; (3) Hydroperoxides and changes in alcoholic myopathy, by Junko Adachi, Migiwa Asamo, and Yasuhino Ueno; and (4) A close association between testicular atrophy, muscle atrophy, and the increase in protein catabolism after chronic ethanol administration, by Kunihiko Takeda, Masayoshi Yamauchi, Kazuhiko Sakamoto, Masaru Takagi, Hisato Nakajima, and Gotaro Toda.
Resumo:
1. An isolated perfused rat liver (IPRL) preparation was used to investigate separately the disposition of the non-steroidal anti-inflammatory drug (NSAID) naproxen (NAP), its reactive acyl glucuronide metabolite (NAG) and a mixture of NAG rearrangement isomers (isoNAG), each at 30 mug NAP equivalents ml(-1) perfusate (n = 4 each group). 2. Following administration to the IPRL, NAP was eliminated slowly in a log-linear manner with an apparent elimination half-life (t(1/2)) of 13.4 +/-4.4 h. No metabolites were detected in perfusate, while NAG was the only metabolite present in bile in measurable amounts (3.9 +/-0.8%, of the dose). Following their administration to the IPRL, both NAG and isoNAG were rapidly hydrolysed (t(1/2) in perfusate=57 +/-3 and 75 +/- 14min respectively). NAG also rearranged to isoNAG in the perfusate. Both NAG and isoNAG were excreted intact in bile (24.6 and 14.8% of the NAG and isoNAG doses, respectively). 3. Covalent NAP-protein adducts in the liver increased as the dose changed from NAP to NAG to isoNAG (0.20 to 0.34 to 0.48% of the doses, respectively). Similarly, formation of covalent NAP-protein adducts in perfusate were greater in isoNAG-dosed perfusions. The comparative results Suggest that isoNAG is a better substrate for adduct formation with liver proteins than NAG.