920 resultados para Pseudomonas cichorii


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the Infectious Diseases Society of America has highlighted a faction of antibiotic-resistant bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) - acronymically dubbed 'the ESKAPE pathogens' - capable of 'escaping' the biocidal action of antibiotics and mutually representing new paradigms in pathogenesis, transmission and resistance. This review aims to consolidate clinically relevant background information on the ESKAPE pathogens and provide a contemporary summary of bacterial resistance, alongside pertinent microbiological considerations necessary to face the mounting threat of antimicrobial resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F:T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F:T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F:T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F:T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F:T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F:T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F:T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F:T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P. aeruginosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotransformation of acridine, dictamnine and 4-chlorofuro[2,3-b]quinolone, using whole cells of Sphingomonas yanoikuyae B8/36, yielded five enantiopure cyclic cis-dihydrodiols, from biphenyl dioxygenase-catalysed dihydroxylation of the carbocyclic rings. cis-Dihydroxylation of the furan ring in dictamnine and 4-chlorofuro[2,3-b] quinoline, followed by ring opening and reduction, yielded two exocyclic diols. The structures and absolute configurations of metabolites have been determined by spectroscopy and stereochemical correlation methods. Enantiopure arene oxide metabolites of acridine and dictamnine have been synthesised, from the corresponding cis-dihydrodiols. The achiral furoquinoline alkaloids robustine, gamma-fagarine, haplopine, isohaplopine-3,3'-dimethylallylether and pteleine have been obtained, from either cis-dihydrodiol, catechol or arene oxide metabolites of dictamnine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background
Chronic Pseudomonas aeruginosa pulmonary infection is associated with a decline in lung function and reduced survival in people with Cystic Fibrosis (CF). Damaging inflammatory and immunological mediators released in the lungs can be used as markers of chronic infection, inflammation and lung tissue damage.

Methods
Clinical samples were collected from CF patients and healthy controls. Serum IgG and IgA anti-Pseudomonas antibodies, sputum IL-8 and TNFα, plasma IL-6 and urine TNFr1 were measured by ELISA. Sputum neutrophil elastase (NE), cathepsin S and cathepsin B were measured by spectrophotometric and fluorogenic assays. The relationship between IgG and IgA, inflammatory mediators and long-term survival was determined.

Results
IgG and IL-6 positively correlated with mortality. However, multivariate analysis demonstrated that after adjusting for FEV1, IgG was not independently related to mortality. A relationship was observed between IgG and IL-6, TNFα, TNFr1 and between IgA and IL8, cathepsin S and cathepsin B.

Conclusions
These data indicate that biomarkers of inflammation are not independent predictors of survival in people with CF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric pressure non-thermal plasma (APNTP) has been gaining increasing interest as a new alternative antibacterial approach. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. Mechanistic elucidation of the antimicrobial activity will facilitate development and rational optimisation of this approach for potential medical applications. In this study, the antibacterial efficacy of an in-house-built APNTP jet was evaluated alongside an investigation of the interactions between APNTP and major cellular components in order to identify the potential cellular targets involved in plasma-mediated bacterial destruction mechanisms. The investigated plasma jet exhibited excellent, rapid antibacterial activity against a selected panel of clinically significant bacterial species including Bacillus cereus, meticillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa, all of which were completely inactivated within 2 min of plasma exposure. Plasma-mediated damaging effects were observed, to varying degrees, on all of the investigated cellular components including DNA, a model protein enzyme, and lipid membrane integrity and permeability. The antibacterial efficacy of APNTP appears to involve a multiple-target mechanism, which potentially reduces the likelihood of emergence of microbial resistance towards this promising antimicrobial approach. However, cellular membrane damage and resulting permeability perturbation was found to be the most likely rate-determining step in this mechanism. Crown Copyright © 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: There is great urgency for alternate sources of antibiotics to be identified. One relatively untapped source of novel bioproducts, including antimicrobials, is organisms derived from extreme environments. Halophiles (which require high salt concentrations) are one such group which is being increasingly explored for their biotechnological potential. The aim of this study was to identify halophilic environmental isolates which possessed in vitro and in vivo antimicrobial and antibiofilm activities. Methods: 73 halophilic bacteria and archaea were isolated from Kilroot salt mine in Northern Ireland. Culture extracts of each isolate were screened for antimicrobial and antibiofilm activity against numerous pathogenic bacteria, including Staphylococcus species and Pseudomonas aeruginosa, both model strains and clinical isolates. The methods used included disc diffusion assays of crude extracts, MIC screening, the MBEC assay, and an in vivo model based on the Greater Wax Moth (Galleria mellonella). Results: The assays indicated >50% of extracts displayed antimicrobial and antibiofilm activity against at least one pathogen, the majority being Staphylococcus species, but also E. coli and P. aeruginosa. Biofilms were either reduced or eradicated by halophile extracts when tested with the MBEC device. Further experiments demonstrated that these effects could be replicated in vivo, with extracts reducing the severity of infections and enhancing the survival of infected G. mellonella. Conclusions: The importance of extremophiles to pharmaceutical research should not be underestimated. While not yet fully characterised, based on the data obtained, the halophiles isolated during this study may provide a promising reservoir of novel antimicrobial and antibiofilm compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) and kill kinetics were established for vancomycin, rifampicin, trimethoprim, gentamicin, and ciprofloxacin against the biofilm forming bacteria Staphylococcus epidermidis (ATCC 35984), Staphylococcus aureus (ATCC 29213), Methicillin Resistant Staphylococcus aureus (MRSA) (ATCC 43300), Pseudomonas aeruginosa (PAO1), and Escherichia coli (NCTC 8196). MICs and MBCs were determined via broth microdilution in 96-well plates. MBECs were studied using the Calgary Biofilm Device. Values obtained were used to investigate the kill kinetics of conventional antimicrobials against a range of planktonic and biofilm microorganisms over a period of 24 hours. Planktonic kill kinetics were determined at 4xMIC and biofilm kill kinetics at relative MBECs. Susceptibility of microorganisms varied depending on antibiotic selected and phenotypic form of bacteria. Gram-positive planktonic isolates were extremely susceptible to vancomycin (highest MBC: 7.81 mg L−1: methicillin sensitive and resistant S. aureus) but no MBEC value was obtained against all biofilm pathogens tested (up to 1000 mg L−1). Both gentamicin and ciprofloxacin displayed the broadest spectrum of activity with MIC and MBCs in the mg L−1 range against all planktonic isolates tested and MBEC values obtained against all but S. epidermidis (ATCC 35984) and MRSA (ATCC 43300).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Human bone marrow-derived mesenchymal stem (stromal) cells (hMSCs) improve survival in mouse models of acute respiratory distress syndrome (ARDS) and reduce pulmonary oedema in a perfused human lung preparation injured with Escherichia coli bacteria. We hypothesised that clinical grade hMSCs would reduce the severity of acute lung injury (ALI) and would be safe in a sheep model of ARDS.

Methods Adult sheep (30–40 kg) were surgically prepared. After 5 days of recovery, ALI was induced with cotton smoke insufflation, followed by instillation of live Pseudomonas aeruginosa (2.5×1011 CFU) into both lungs under isoflurane anaesthesia. Following the injury, sheep were ventilated, resuscitated with lactated Ringer's solution and studied for 24 h. The sheep were randomly allocated to receive one of the following treatments intravenously over 1 h in one of the following groups: (1) control, PlasmaLyte A, n=8; (2) lower dose hMSCs, 5×106 hMSCs/kg, n=7; and (3) higher-dose hMSCs, 10×106 hMSCs/kg, n=4.

Results By 24 h, the PaO2/FiO2 ratio was significantly improved in both hMSC treatment groups compared with the control group (control group: PaO2/FiO2 of 97±15 mm Hg; lower dose: 288±55 mm Hg (p=0.003); higher dose: 327±2 mm Hg (p=0.003)). The median lung water content was lower in the higher-dose hMSC-treated group compared with the control group (higher dose: 5.0 g wet/g dry [IQR 4.9–5.8] vs control: 6.7 g wet/g dry [IQR 6.4–7.5] (p=0.01)). The hMSCs had no adverse effects.

Conclusions Human MSCs were well tolerated and improved oxygenation and decreased pulmonary oedema in a sheep model of severe ARDS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale:
Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family.

Objectives:
In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung.

Methods:
Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction.Measurements and Main Results: In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion.

Conclusions:
The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cepacia complex organisms are important transmissible pathogens found in cystic fibrosis (CF) patients. In recent years, the rates of cross-infection of epidemic strains have declined due to effective infection control efforts. However, cases of sporadic B. cepacia complex infection continue to occur in some centers. The acquisition pathways and clinical outcomes of sporadic B. cepacia complex infection are unclear. We sought to determine the patient clinical characteristics, outcomes, incidence, and genotypic relatedness for all cases of B. cepacia complex infection at two CF centers. We also sought to study the external conditions that influence the acquisition of infection. From 2001 to 2011, 67 individual organisms were cultured from the respiratory samples of 64 patients. Sixty-five percent of the patients were adults, in whom chronic infections were more common (68%) (P = 0.006). The incidence of B. cepacia complex infection increased by a mean of 12% (95% confidence interval [CI], 3 to 23%) per year. The rates of transplantation and death were similar in the incident cases who developed chronic infection compared to those in patients with chronic Pseudomonas aeruginosa infection. Multilocus sequence typing revealed 50 individual strains from 65 isolates. Overall, 85% of the patients were infected with unique strains, suggesting sporadic acquisition of infection. The yearly incidence of nonepidemic B. cepacia complex infection was positively correlated with the amount of rainfall in the two sites examined: subtropical Brisbane (r = 0.65, P = 0.031) and tropical Townsville (r = 0.82, P = 0.002). This study demonstrates that despite strict cohort segregation, new cases of unrelated B. cepacia complex infection continue to occur. These data also support an environmental origin of infection and suggest that climate conditions may be associated with the acquisition of B. cepacia complex infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in the airway microbiome may be important in the pathophysiology of chronic lung disease in patients with cystic fibrosis. However, little is known about the microbiome in early cystic fibrosis lung disease and the relationship between the microbiomes from different niches in the upper and lower airways. Therefore, in this cross-sectional study, we examined the relationship between the microbiome in the upper (nose and throat) and lower (sputum) airways from children with cystic fibrosis using next generation sequencing. Our results demonstrate a significant difference in both α and β-diversity between the nose and the two other sampling sites. The nasal microbiome was characterized by a polymicrobial community while the throat and sputum communities were less diverse and dominated by a few operational taxonomic units. Moreover, sputum and throat microbiomes were closely related especially in patients with clinically stable lung disease. There was a high inter-individual variability in sputum samples primarily due to a decrease in evenness linked to increased abundance of potential respiratory pathogens such as Pseudomonas aeruginosa. Patients with chronic Pseudomonas aeruginosa infection exhibited a less diverse sputum microbiome. A high concordance was found between pediatric and adult sputum microbiomes except that Burkholderia was only observed in the adult cohort. These results indicate that an adult-like lower airways microbiome is established early in life and that throat swabs may be a good surrogate in clinically stable children with cystic fibrosis without chronic Pseudomonas aeruginosa infection in whom sputum sampling is often not feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Aims: The identification of complex chronic polymicrobial infections, such as those observed in the cystic fibrosis (CF) airways, are often a diagnostic challenge. Few studies have compared culture-dependent methods with molecular identification making it hard to describe bacterial communities in a comprehensive manner. The aim of the study is to compare four different methods with respect to their similarities and differences in detection of bacteria. Methods: We compared41 sputum samples fromroutine clinical-culture, extended-culture (aerobic and anaerobic), and molecular identification such as Roche 454-FLX Titanium and T-RFLP to assess concurrence between methodologies in detecting bacteria. The agreement between methodologies in detecting either absence or presence of bacterial taxa was assessed by Kappa (κ) statistics. Results: The majority of bacterial taxa identified by culture were also identified with molecular analysis. In total 2, 60, 25, and 179 different bacterial taxa were identified with clinical-culture, extended-culture, T-RFLP and 454-FLX respectively. Clinical-culture, extended-culture and T-RFLP were poor predictors of species richness when compared to 454-FLX (p < 0.0001). Agreement between methods for detecting Pseudomonas sp. and Burkholderia sp. was good with κ ≥ 0.7 [p < 0.0001] and κ ≥ 0.9 [p < 0.0001] respectively. Detection of anaerobic bacteria, such as Prevotella sp. and Veillonella sp., was moderate between extended-culture and 454-FLX with κ = 0.461 [p < 0.0001] and κ = 0.311 [p = 0.032] respectively, and good between T-RFLP and 454-FLX with κ = 0.577 [p < 0.0001] and κ = 0.808 [p < 0.0001] respectively. Agreement between methods for other main bacterial taxa, such as Staphylcoccus sp. and Streptococcus sp., was poor with only a moderate agreement for detection of Streptococcus sp. observed between T-RFLP and 454-FLX (κ = 0.221 [p = 0.024]). Conclusions: This study demonstrates the increased sensitivity culture-independent microbial identification such as the 454-FLX have over clinical-culture, extended-culture and T-RFLP methodologies. The extended-culture detected majority of the most prevalent bacterial taxa associated with chronic colonisation of the CF airways which were also detected by culture-independent methodologies. However, agreement between methods in detecting number of potentially relevant bacteria is largely lacking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Aims: Persistent bacterial infection is a major cause of morbidity and mortality in patients with both Cystic Fibrosis (CF) and non-CF Bronchiectasis (non-CFBX). Numerous studies have shown that CF and non-CFBX airways are colonised by a complex microbiota. However, many bacteria are difficult, if not impossible, to culture by conventional laboratory techniques. Therefore, molecular detection techniques offer a more comprehensive view of bacterial diversity within clinical specimens. The objective of this study was to characterise and compare bacterial diversity and relative abundance in patients with CF and non-CFBX during exacerbation and when clinically stable.

Methods: Sputum samples were collected from CF (n=50 samples) and non-CFBX (n=52 samples) patients at the start and end of treatment for an infective exacerbation and when clinically stable. Pyrosequencing was used to assess the microbial diversity and relative genera (or the closest possibly taxonomic order) abundance within the samples. Each sequence read was defined based on 3% difference.

Results: High-throughput pyrosequencing allowed a sensitive and detailed examination of microbial community composition. Rich microbial communities were apparent within both CF (171 species-level phylotypes per genus) and non-CFBX airways (144 species-level phylotypes per genus). Relative species distribution within those two environments was considerably different; however, relatively few genera formed a core of microorganisms, representing approximately 90% of all sequences, which dominated both environments. Relative abundance based on observed operational taxonomic units demonstrated that the most abundant bacteria in CF were Pseudomonas (28%), Burkholderia (22%), Streptococcus (13%), family Pseudomonadaceae (8%) and Prevotella (6%). In contrast, the most commonly detected operational taxonomic units in non-CFBX were Haemophilus (22%), Streptococcus (14%), other (unassigned taxa) (11%), Pseudomonas (10%), Veillonella (7%) and Prevotella (6%).

Conclusions: These results suggest that distinctive microbial communities are associated with infection and/or colonisation in patients with both CF and non-CFBX. Although relatively high species richness was observed within the two environments, each was dominated by different core taxa. This suggests that differences in the lung environment of these two diseases may affect adaptability of the relevant bacterial taxa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Aims: Previous studies have shown that the lungs of Cystic Fibrosis (CF) and bronchiectasis (BE, not caused by CF) patients are colonised by a range of aerobic and anaerobic bacteria. As bacteria are also implicated in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD), this study aimed to determine the culture microbiome of the COPD airways.

Methods: Samples were collected from 13 stable COPD patients during routine bronchoscopy. Bronchial washings were taken at a single location in the right middle lobe by flushing and removing 30 ml of sterile saline. Samples were cultured under strict anaerobic conditions with bacteria detected by plating on both selective and non-selective agar media and quantified by total viable count (TVC). Identification of the cultured bacteria was performed by amplification and subsequent sequencing of the 16sRNA gene.

Results: Mean FEV1 was 1.36 (range 0.84–2.26, mean per cent predicted FEV1, 54%), and the mean ratio (FEV1/FVC) was 51%. Bacteria were detected in 12/13 samples (92%) with bacteria from the genera Streptococcus [12/13 samples, 92%; mean (range) TVC 9.62×105 cfu/ml (1.50×103–1.42×107)] and Haemophilus [4/13 samples, 31%; mean (range) 6.40×104 cfu/ml (2.20×103–1.60×105)] most frequently detected. Anaerobic bacteria primarily from the genera Prevotella [8/13 samples, 62%; mean (range) TVC 1.12×104 cfu/ml (1.30×103–4.20×104)] and Veillonella [5/13 samples, 38%; mean (range) TVC 1.29×105 cfu/ml (4.20×103–3.60×105)] were also detected. Pseudomonas and Moraxella were not detected in any samples.

Conclusions: Our results show that bacteria from the genera Streptococcus, Haemophilus, Prevotella and Veillonella are frequently present the airways of patients suffering from COPD. Taking account of the dilutional effect of the bronchial wash procedure and extrapolating to allow comparison with sputum data in our laboratory for CF and BE, the relative load of bacteria from the genera Streptococcus, Prevotella and Veillonella is similar in these three airway diseases. The potential role of these bacteria in the progression and pathogenesis of COPD requires further investigation.