910 resultados para Protein interactions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galectin-1 (Gal-1), the prototype of a family of β -galactoside-binding proteins, has been shown to attenuate experimental acute and chronic inflammation. In view of the fact that endothelial cells (ECs), but not human polymorphonuclear leukocytes (PMNs), expressed Gal-1 we tested here the hypothesis that the protein could modulate leukocyte-EC interaction in inflammatory settings. In vitro, human recombinant (hr) Gal-1 inhibited PMN chemotaxis and trans-endothelial migration. These actions were specific as they were absent if Gal-1 was boiled or blocked by neutralizing antiserum. In vivo, hrGal-1 (optimum effect at 0.3 μg equivalent to 20 pmol) inhibited interleukin-1β-induced PMN recruitment into the mouse peritoneal cavity. Intravital microscopy analysis showed that leukocyte flux, but not their rolling velocity, was decreased by an anti-inflammatory dose of hrGal-1. Binding of biotinylated Gal-1 to resting and post-adherent human PMNs occurred at concentrations inhibitory in the chemotaxis and transmigration assays. In addition, the pattern of Gal-1 binding was differentially modulated by PMN or EC activation. In conclusion, these data suggest the existence of a previously unrecognized function of Gal-1, that is inhibition of leukocyte rolling and extravasation in experimental inflammation. It is possible that endogenous Gal-1 may be part of a novel anti-inflammatory loop in which the endothelium is the source of the protein and the migrating PMNs the target for its anti-inflammatory action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial DNA gyrase, has been identified as the target of several antibacterial agents, including the coumarin drugs. The coumarins inhibit the gyrase action by competitive binding to the ATP-binding site of DNA gyrase B (GyrB) protein. The high in vitro inhibitory potency of coumarins against DNA gyrase reactions has raised interest in studies on coumarin-gyrase interactions. In this context, a series of low-molecular weight peptides, including the coumarin resistance-determining region of subunit B of Escherichia coli gyrase, has been designed and synthesized. The first peptide model was built using the natural fragment 131-146 of GyrB and was able to bind to novobiocin (K a = 1.8 ± 0.2 × 105/M) and ATP (Ka = 1.9 ± 0.4 × 103/M). To build the other sequences, changes in the Arg136 residue were introduced so that the binding to the drug was progressively reduced with the hydrophobicity of this residue (Ka = 1.3 ± 0.1 × 105/M and 1.0 ± 0.2 × 105/M for Ser and His, respectively). No binding was observed for the change Arg136 to Leu. In contrast, the binding to ATP was not altered, independently of the changes promoted. On the contrary, for peptide-coumarin and peptide-ATP complexes, Mg2+ appears to modulate the binding process. Our results demonstrate the crucial role of Arg 136 residue for the stability of coumarin-gyrase complex as well as suggest a different binding site for ATP and in both cases the interactions are mediated by magnesium ions. Copyright Blackwell Munksgaard, 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pyrH-encoded uridine 5′-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg 2+ as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents. © 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that ingestion by the army worm Spodoptera frugiperda of Cry1Ac toxin from Bt cotton promotes histochemical and ultrastructural changes in the digestive cells of the predatory pentatomid bug Podisus nigrispinus. Therefore, mindful of the changes in the midgut of the predator, which represents the first line of defence in this insect, our aim was to test the hypothesis that the consumption of Bt cotton-fed S. frugiperda by P. nigrispinus might lead to alterations in components of the immune system of P. nigrispinus. The Cry1Ac toxin level in the leaves of Bt cotton, nitric oxide, phenoloxidase activity, and total proteins were quantified by ELISA. Total and differential hemocyte counts were evaluated, and hemocyte ultrastructure analysis was undertaken. We found that ingestion of the prey fed daily with approximately 23 ± 0.70 ng g-1 Cry1Ac by wet weight of leaves, and expressed by the Bt cotton, induces small ultrastructural changes in the predator's granulocytes and plasmatocytes. However, these changes did not affect the total number and differential and humoral variables analyzed for the bug's hemocytes. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paracoccidoides brasiliensis adhesion to lung epithelial cells is considered an essential event for the establishment of infection and different proteins participate in this process. One of these proteins is a 30 kDa adhesin, pI 4.9 that was described as a laminin ligand in previous studies, and it was more highly expressed in more virulent P. brasiliensis isolates. This protein may contribute to the virulence of this important fungal pathogen. Using Edman degradation and mass spectrometry analysis, this 30 kDa adhesin was identified as a 14-3-3 protein. These proteins are a conserved group of small acidic proteins involved in a variety of processes in eukaryotic organisms. However, the exact function of these proteins in some processes remains unknown. Thus, the goal of the present study was to characterize the role of this protein during the interaction between the fungus and its host. To achieve this goal, we cloned, expressed the 14-3-3 protein in a heterologous system and determined its subcellular localization in in vitro and in vivo infection models. Immunocytochemical analysis revealed the ubiquitous distribution of this protein in the yeast form of P. brasiliensis, with some concentration in the cytoplasm. Additionally, this 14-3-3 protein was also present in P. brasiliensis cells at the sites of infection in C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells for 72 h (acute infections) and 30 days (chronic infection). An apparent increase in the levels of the 14-3-3 protein in the cell wall of the fungus was also noted during the interaction between P. brasiliensis and A549 cells, suggesting that this protein may be involved in host-parasite interactions, since inhibition assays with the protein and this antibody decreased P. brasiliensis adhesion to A549 epithelial cells. Our data may lead to a better understanding of P. brasiliensis interactions with host tissues and paracoccidioidomycosis pathogenesis. © 2013 Silva et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: To investigate mechanisms of fetal-maternal cell interactions in the bovine placenta, we developed a model of transgenic enhanced Green Fluorescent Protein (t-eGFP) expressing bovine embryos produced by nuclear transfer (NT) to assess the distribution of fetal-derived products in the bovine placenta. In addition, we searched for male specific DNA in the blood of females carrying in vitro produced male embryos. Our hypothesis is that the bovine placenta is more permeable to fetal-derived products than described elsewhere. Methodology/Principal Findings: Samples of placentomes, chorion, endometrium, maternal peripheral blood leukocytes and blood plasma were collected during early gestation and processed for nested-PCR for eGFP and testis-specific Y-encoded protein (TSPY), western blotting and immunohistochemistry for eGFP detection, as well as transmission electron microscopy to verify the level of interaction between maternal and fetal cells. TSPY and eGFP DNA were present in the blood of cows carrying male pregnancies at day 60 of pregnancy. Protein and mRNA of eGFP were observed in the trophoblast and uterine tissues. In the placentomes, the protein expression was weak in the syncytial regions, but intense in neighboring cells on both sides of the fetal-maternal interface. Ultrastructurally, our samples from t-eGFP expressing NT pregnancies showed to be normal, such as the presence of interdigitating structures between fetal and maternal cells. In addition, channels-like structures were present in the trophoblast cells. Conclusions/Significance: Data suggested that there is a delivery of fetal contents to the maternal system on both systemic and local levels that involved nuclear acids and proteins. It not clear the mechanisms involved in the transfer of fetal-derived molecules to the maternal system. This delivery may occur through nonclassical protein secretion; throughout transtrophoblastic-like channels and/or by apoptotic processes previously described. In conclusion, the bovine synepitheliochorial placenta displays an intimate fetal-maternal interaction, similar to other placental types for instance human and mouse. © 2013 Pereira et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results: In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Conclusions: Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication. © 2013 Morais et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. © 2013 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Acute respiratory infections (ARI) are the leading cause of infant mortality in the world, and human respiratory syncytial virus (HRSV) is one of the main agents of ARI. One of the key targets of the adaptive host immune response is the RSV G-protein, which is responsible for attachment to the host cell. There is evidence that compounds such as flavonoids can inhibit viral infection in vitro. With this in mind, the main purpose of this study was to determine, using computational tools, the potential sites for interactions between G-protein and flavonoids. Results: Our study allowed the recognition of an hRSV G-protein model, as well as a model of the interaction with flavonoids. These models were composed, mainly, of -helix and random coil proteins. The docking process showed that molecular interactions are likely to occur. The flavonoid kaempferol-3-O-α-L-arabinopyranosil-(2 → 1)-α-L-apiofuranoside-7-O-α-L-rhamnopyranoside was selected as a candidate inhibitor. The main forces of the interaction were hydrophobic, hydrogen and electrostatic. Conclusions: The model of G-protein is consistent with literature expectations, since it was mostly composed of random coils (highly glycosylated sites) and -helices (lipid regions), which are common in transmembrane proteins. The docking analysis showed that flavonoids interact with G-protein in an important ectodomain region, addressing experimental studies to these sites. The determination of the G-protein structure is of great importance to elucidate the mechanism of viral infectivity, and the results obtained in this study will allow us to propose mechanisms of cellular recognition and to coordinate further experimental studies in order to discover effective inhibitors of attachment proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The N-terminus of the human dihydroorotate dehydrogenase (HsDHODH) has been described as important for the enzyme attachment in the inner mitochondrial membrane and possibly to regulate enzymatic activity. In this study, we synthesized the peptide acetyl-GDERFYAEHLMPTLQGLLDPESAHRL AVRFTSLGamide, comprising the residues 33-66 of HsDHODH N-terminal conserved microdomain. Langmuir monolayers and circular dichroism (CD) were employed to investigate the interactions between the peptide and membrane model, as micelles and monolayers of the lipids phosphatidylcholine (PC), 3-phosphatidylethanolamine (PE) and cardiolipin (CL). These lipids represent the major constituents of inner mitochondrial membranes. According to CD data, the peptide adopted a random structure in water, whereas it acquired α-helical structures in the presence of micelles. The π–A isotherms and polarization- modulated infrared reflection-absorption spectroscopy on monolayers showed that the peptide interacted with all lipids, but in different ways. In DPPC monolayers, the peptide penetrated into the hydrophobic region. The strongest initial interaction occurred with DPPE, but the peptide was expelled from this monolayer at high surface pressures. In CL, the peptide could induce a partial dissolution of the monolayer, leading to shorter areas at the monolayer collapse. These results corroborate the literature, where the HsDHODH microdomain is anchored into the inner mitochondrial membrane. Moreover, the existence of distinct conformations and interactions with the different membrane lipids indicates that the access to the enzyme active site may be controlled not only by conformational changes occurring at the microdomain of the protein, but also by some lipid-protein synergetic mechanism, where the HsDHODH peptide would be able to recognize lipid domains in the membrane. - See more at: http://www.eurekaselect.com/122062/article#sthash.1ZZbc7E0.dpuf

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications. The selected linker molecules (lysine, arginine, and phosphoserine) can influence the adsorption capacity by changing the electrostatic nature of the HA surface. Qualitative and quantitative analyses of linker-molecule interactions with the HA surface have been performed by using NMR spectroscopy, zeta-potential measurements, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Additionally, correlations to theoretical isotherm models have been calculated with respect to Langmuir and Freundlich isotherms. Lysine and arginine increased the protein adsorption, whereas phosphoserine reduced the protein adsorption. The results show that the adsorption capacity can be controlled with different functionalization, depending on the protein-carrier selections under consideration. The scientific knowledge acquired from this study can be applied in various biotechnological applications that involve biomolecule-inorganic material interfaces.