942 resultados para Protective antigen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two ubiquitously expressed sphingosine kinases (SphK) 1 and 2 are key regulators of the sphingolipid signaling pathway. Despite the formation of an identical messenger, i.e. sphingosine 1-phosphate (S1P), they exert strikingly different functions. Particularly, SphK2 is necessary for the phosphorylation of the sphingosine analog fingolimod (FTY720), which is protective in rodent stroke models. Using gene deficient mice lacking either SphK1 or SphK2, we investigated the role of the two lipid kinases in experimental stroke. We performed 2h transient middle cerebral artery occlusion (tMCAO) and analyzed lesion size and neurological function after 24h. Treatment groups received 1mg/kg FTY720. Neutrophil infiltration, microglia activation, mRNA and protein expression of SphK1, SphK2 and the S1P(1) receptor after tMCAO were studied. Genetic deletion of SphK2 but not SphK1 increased ischemic lesion size and worsened neurological function after tMCAO. The protective effect of FTY720 was conserved in SphK1(-/-) mice but not in SphK2(-/-) mice. This suggests that SphK2 activity is an important endogenous protective mechanism in cerebral ischemia and corroborates that the protective effect of FTY720 is mediated via phospho-FTY720.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designed Ankyrin Repeat Proteins (DARPins) represent a novel class of binding molecules. Their favorable biophysical properties such as high affinity, stability and expression yields make them ideal candidates for tumor targeting. Here, we describe the selection of DARPins specific for the tumor-associated antigen epithelial cell adhesion molecule (EpCAM), an approved therapeutic target on solid tumors. We selected DARPins from combinatorial libraries by both phage display and ribosome display and compared their binding on tumor cells. By further rounds of random mutagenesis and ribosome display selection, binders with picomolar affinity were obtained that were entirely monomeric and could be expressed at high yields in the cytoplasm of Escherichia coli. One of the binders, denoted Ec1, bound to EpCAM with picomolar affinity (K(d)=68 pM), and another selected DARPin (Ac2) recognized a different epitope on EpCAM. Through the use of a variety of bivalent and tetravalent arrangements with these DARPins, the off-rate on cells was further improved by up to 47-fold. All EpCAM-specific DARPins were efficiently internalized by receptor-mediated endocytosis, which is essential for intracellular delivery of anticancer agents to tumor cells. Thus, using EpCAM as a target, we provide evidence that DARPins can be conveniently selected and rationally engineered to high-affinity binders of various formats for tumor targeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T-cells specific for foreign (e.g., viral) antigens can give rise to strong protective immune responses, whereas self/tumor antigen-specific T-cells are thought to be less powerful. However, synthetic T-cell vaccines composed of Melan-A/MART-1 peptide, CpG and IFA can induce high frequencies of tumor-specific CD8 T-cells in PBMC of melanoma patients. Here we analyzed the functionality of these T-cells directly ex vivo, by multiparameter flow cytometry. The production of multiple cytokines (IFNγ, TNFα, IL-2) and upregulation of LAMP-1 (CD107a) by tumor (Melan-A/MART-1) specific T-cells was comparable to virus (EBV-BMLF1) specific CD8 T-cells. Furthermore, phosphorylation of STAT1, STAT5 and ERK1/2, and expression of CD3 zeta chain were similar in tumor- and virus-specific T-cells, demonstrating functional signaling pathways. Interestingly, high frequencies of functionally competent T-cells were induced irrespective of patient's age or gender. Finally, CD8 T-cell function correlated with disease-free survival. However, this result is preliminary since the study was a Phase I clinical trial. We conclude that human tumor-specific CD8 T-cells can reach functional competence in vivo, encouraging further development and Phase III trials assessing the clinical efficacy of robust vaccination strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Th17-mediated immune responses have been recently identified as novel pathogenic mechanisms in a variety of conditions; however, their importance in allograft rejection processes is still debated. In this paper, we searched for MHC or minor Ag disparate models of skin graft rejection in which Th17 immune responses might be involved. We found that T cell-derived IL-17 is critical for spontaneous rejection of minor but not major Ag-mismatched skin grafts. IL-17 neutralization was associated with a lack of neutrophil infiltration and neutrophil depletion delayed rejection, suggesting neutrophils as an effector mechanism downstream of Th17 cells. Regulatory T cells (Tregs) appeared to be involved in Th17 reactivity. We found that in vivo Treg depletion prevented IL-17 production by recipient T cells. An adoptive cotransfer of Tregs with naive monospecific antidonor T cells in lymphopenic hosts biased the immune response toward Th17. Finally, we observed that IL-6 was central for balancing Tregs and Th17 cells as demonstrated by the prevention of Th17 differentiation, the enhanced Treg/Th17 ratio, and a net impact of rejection blockade in the absence of IL-6. In conclusion, the ability of Tregs to promote the Th17/neutrophil-mediated pathway of rejection that we have described should be considered as a potential drawback of Treg-based cell therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4+ T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4+ T cells, and induce cytokines. The decreased antigen processing and CD4+ T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re-entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. CONCLUSION: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above-described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QUESTIONS UNDER STUDY/PRINCIPLES: Analysis of changes in the behaviour of wearing protective equipment by alpine skiers and snowboarders after injury, performed at a level I trauma centre in Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In Switzerland there are about 150,000 equestrians. Horse related injuries, including head and spinal injuries, are frequently treated at our level I trauma centre. Objectives To analyse injury patterns, protective factors, and risk factors related to horse riding, and to define groups of safer riders and those at greater risk Methods We present a retrospective and a case-control survey at conducted a tertiary trauma centre in Bern, Switzerland. Injured equestrians from July 2000 - June 2006 were retrospectively classified by injury pattern and neurological symptoms. Injured equestrians from July-December 2008 were prospectively collected using a questionnaire with 17 variables. The same questionnaire was applied in non-injured controls. Multiple logistic regression was performed, and combined risk factors were calculated using inference trees. Results Retrospective survey A total of 528 injuries occured in 365 patients. The injury pattern revealed as follows: extremities (32%: upper 17%, lower 15%), head (24%), spine (14%), thorax (9%), face (9%), pelvis (7%) and abdomen (2%). Two injuries were fatal. One case resulted in quadriplegia, one in paraplegia. Case-control survey 61 patients and 102 controls (patients: 72% female, 28% male; controls: 63% female, 37% male) were included. Falls were most frequent (65%), followed by horse kicks (19%) and horse bites (2%). Variables statistically significant for the controls were: Older age (p = 0.015), male gender (p = 0.04) and holding a diploma in horse riding (p = 0.004). Inference trees revealed typical groups less and more likely to suffer injury. Conclusions Experience with riding and having passed a diploma in horse riding seem to be protective factors. Educational levels and injury risk should be graded within an educational level-injury risk index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of cellular pathways capable of limiting ischemia/reperfusion (I/R) injury remains a frontier in medicine, and its clinical relevance is urgent. Histidine triad nucleotide binding protein 1 (HINT1) is a tumor suppressor that influences apoptosis. Because apoptotic pathways are a feature of I/R injury, we asked whether Hint1 influences hepatic I/R injury. Hint1(-/-) and C57BL/6 mice were subjected to 70% liver ischemia followed by reperfusion for 3 or 24 hours or to a sham operation. The serum aminotransferase levels, histological lesions, apoptosis, reactive oxygen species, and expression of B cell lymphoma 2-associated X protein (Bax), heme oxygenase 1 (HO-1), interleukin-6 (IL-6), IL-10, tumor necrosis factor-a, Src, nuclear factor kappa B (p65/RelA), and c-Jun were quantified. The responses to toll-like receptor ligands and nicotinamide adenine dinucleotide phosphate oxidase activity in Kupffer cells were compared in Hint1(-/-) mice and C57BL/6 mice. After I/R, the levels of serum aminotransferases, parenchymal necrosis, and hepatocellular apoptosis were significantly lower in Hint1(-/-) mice versus control mice. Furthermore, Bax expression decreased more than 2-fold in Hint1(-/-) mice, and the increases in reactive oxygen species and HO-1 expression that were evident in wild-type mice after I/R were absent in Hint1(-/-) mice. The phosphorylation of Src and the nuclear translocation of p65 were increased in Hint1(-/-) mice, whereas the nuclear expression of phosphorylated c-Jun was decreased. The levels of the protective cytokines IL-6 and IL-10 were increased in Hint1(-/-) mice. These effects increased survival after I/R in mice lacking Hint1. Hint1(-/-) Kupffer cells were less activated than control cells after stimulation with lipopolysaccharides. CONCLUSION: The Hint1 protein influences the course of I/R injury, and its ablation in Kupffer cells may limit the extent of the injury.