935 resultados para Prolactin hormone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen receptor (ER) and thyroid hormone receptors (TRs) are ligand-dependent nuclear transcription factors that can bind to an identical half-site, AGGTCA, of their cognate hormone response elements. By in vitro transfection analysis in CV-1 cells, we show that estrogen induction of chloramphenicol acetyltransferase (CAT) activity in a construct containing a CAT reporter gene under the control of a minimal thymidine kinase (tk) promoter and a copy of the consensus ER response element was attenuated by cotransfection of TR alpha 1 plus triiodothyronine treatment. This inhibitory effect of TR was ligand-dependent and isoform-specific. Neither TR beta 1 nor TR beta 2 cotransfection inhibited estrogen-induced CAT activity, although both TR alpha and TR beta can bind to a consensus ER response element. Furthermore, cotransfection of a mutated TR alpha 1 that lacks binding to the AGGTCA sequence also inhibited the estrogen effect. Thus, the repression of estrogen action by liganded TR alpha 1 may involve protein-protein interactions although competition of ER and TR at the DNA level cannot be excluded. A similar inhibitory effect of liganded TR alpha 1 on estrogen induction of CAT activity was observed in a construct containing the preproenkephalin (PPE) promoter. A study in hypophysectomized female rats demonstrated that the estrogen-induced increase in PPE mRNA levels in the ventromedial hypothalamus was diminished by coadministration of triiodothyronine. These results suggest that ER and TR may interact to modulate estrogen-sensitive gene expression, such as for PPE, in the hypothalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p300 and its family member, CREB-binding protein (CBP), function as key transcriptional coactivators by virtue of their interaction with the activated forms of certain transcription factors. In a search for additional cellular targets of p300/CBP, a protein-protein cloning strategy, surprisingly identified SRC-1, a coactivator involved in nuclear hormone receptor transcriptional activity, as a p300/CBP interactive protein. p300 and SRC-1 interact, specifically, in vitro and they also form complexes in vivo. Moreover, we show that SRC-1 encodes a new member of the basic helix-loop-helix-PAS domain family and that it physically interacts with the retinoic acid receptor in response to hormone binding. Together, these results implicate p300 as a component of the retinoic acid signaling pathway, operating, in part, through specific interaction with a nuclear hormone receptor coactivator, SRC-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism underlying the generation of soluble growth hormone binding protein (GHBP) probably differs among species. In rats and mice, it involves an alternatively spliced mRNA, whereas in rabbits, it involves limited proteolysis of the membrane-bound growth hormone receptor (GHR). In humans, this latter mechanism is favored, as no transcript coding for a soluble GHR has been detected so far. To test this hypothesis, we analyzed COS-7 cells transiently expressing the full-length human (h) GHR and observed specific GH-binding activity in the cell supernatants. Concomitantly, an alternatively spliced form in the cytoplasmic domain of GHR, hGHR-tr, was isolated from several human tissues. hGHR-tr is identical in sequence to hGHR, except for a 26-bp deletion leading to a stop codon at position 280, thereby truncating 97.5% of the intracellular domain of the receptor protein. When compared with hGHR, hGHR-tr showed a significantly increased capacity to generate a soluble GHBP. Interestingly, this alternative transcript is also expressed in liver from rabbits, mice, and rats, suggesting that, in these four species, proteolysis of the corresponding truncated transmembrane GHR is a common mechanism leading to GHBP generation. These findings support the hypothesis that GHBP may at least partly result from alternative splicing of the region encoding the intracellular domain and that the absence of a cytoplasmic domain may be involved in increased release of GHBP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estrogen receptor (ER), a member of a large superfamily of nuclear hormone receptors, is a ligand-inducible transcription factor that regulates the expression of estrogen-responsive genes. The ER, in common with other members of this superfamily, contains two transcription activation functions (AFs)--one located in the amino-terminal region (AF-1) and the second located in the carboxyl-terminal region (AF-2). In most cell contexts, the synergistic activity of AF-1 and AF-2 is required for full estradiol (E2)-stimulated activity. We have previously shown that a ligand-dependent interaction between the two AF-containing regions of ER was promoted by E2 and the antiestrogen trans-hydroxytamoxifen (TOT). This interaction, however, was transcriptionally productive only in the presence of E2. To explore a possible role of steroid receptor coactivators in transcriptional synergism between AF-1 and AF-2, we expressed the amino terminal (AF-1-containing) and carboxyl-terminal (AF-2-containing) regions of ER as separate polypeptides in mammalian cells, along with the steroid receptor coactivator-1 protein (SRC-1). We demonstrate that SRC-1, which has been shown to significantly increase ER transcriptional activity, enhanced the interaction, mediated by either E2 or TOT, between the AF-1-containing and AF-2-containing regions of the ER. However, this enhanced interaction resulted in increased transcriptional effectiveness only with E2 and not with TOT, consistent with the effects of SRC-1 on the full-length receptor. Our results suggest that after ligand binding, SRC-1 may act, in part, as an adapter protein that promotes the integration of amino- and carboxyl-terminal receptor functions, allowing for full receptor activation. Potentially, SRC-1 may be capable of enhancing the transcriptional activity of related nuclear receptor superfamily members by facilitating the productive association of the two AF-containing regions in these receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parathyroid hormone-related peptide (PTHrP) was initially identified as a product of malignant tumors that mediates paraneoplastic hypercalcemia. It is now known that the parathyroid hormone (PTH) and PTHrP genes are evolutionarily related and that the products of these two genes share a common receptor, the PTH/PTHrP receptor. PTHrP and the PTH/PTHrP receptor are widely expressed in both adult and fetal tissues, and recent gene-targeting and disruption experiments have implicated PTHrP as a developmental regulatory molecule. Apparent PTHrP functions include the regulation of endochondral bone development, of hair follicle formation, and of branching morphogenesis in the breast. Herein, we report that overexpression of PTHrP in chondrocytes using the mouse type II collagen promoter induces a novel form of chondrodysplasia characterized by short-limbed dwarfism and a delay in endochondral ossification. This features a delay in chondrocyte differentiation and in bone collar formation and is sufficiently marked that the mice are born with a cartilaginous endochondral skeleton. In addition to the delay, chondrocytes in the transgenic mice initially become hypertrophic at the periphery of the developing long bones rather than in the middle, leading to a seeming reversal in the pattern of chondrocyte differentiation and ossification. By 7 weeks, the delays in chondrocyte differentiation and ossification have largely corrected, leaving foreshortened and misshapen but histologically near-normal bones. These findings confirm a role for PTHrP as an inhibitor of the program of chondrocyte differentiation. PTHrP may function in this regard to maintain the stepwise differentiation of chondrocytes that initiates endochondral ossification in the midsection of endochondral bones early in development and that also permits linear growth at the growth plate later in development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The POU transcription factor Pit-1 activates members of the prolactin/growth hormone gene family in specific endocrine cell types of the pituitary gland. Although Pit-1 is structurally conserved among vertebrate species, evolutionary changes in the pattern of Pit-1 RNA splicing have led to a notable "contraction" of the transactivation domain in the mammalian lineage, relative to Pit-1 in salmonid fish. By site-directed mutagenesis we demonstrate that two splice insertions in salmon Pit-1, called beta (29 aa) and gamma (33 aa), are critical for cooperative activation of the salmon prolactin gene. Paradoxically, Pit-1-dependent activation of the prolactin gene in rat is enhanced in the absence of the homologous beta-insert sequence. This apparent divergence in the mechanism of activation of prolactin genes by Pit-1 is target gene specific, as activation of rat and salmon growth hormone genes by Pit-1 splice variants is entirely conserved. Our data suggest that efficient activation of the prolactin gene in the vertebrate pituitary has significantly constrained the pattern of splicing within the Pit-1 transactivation domain. Rapid evolutionary divergence of prolactin gene function may have demanded changes in Pit-1/protein interactions to accommodate new patterns of transcriptional control by developmental or physiological factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuropeptide gonadotropin-releasing hormone (GnRH) is the major regulator of reproduction in vertebrates. Our goal was to determine whether GnRH could be isolated and identified by primary structure in a protochordate and to examine its location by immunocytochemistry. The primary structure of two novel decapeptides from the tunicate Chelyosoma productum (class Ascidiacea) was determined. Both show significant identity with vertebrate GnRH. Tunicate GnRH-I (pGlu-His-Trp-Ser-Asp-Tyr-Phe-Lys-Pro-Gly-NH2) has 60% of its residues conserved, compared with mammalian GnRH, whereas tunicate GnRH-II (pGlu-His-Trp-Ser-Leu-Cys-His-Ala-Pro-Gly-NH2) is unusual in that it was isolated as a disulfide-linked dimer. Numerous immunoreactive GnRH neurons lie within blood sinuses close to the gonoducts and gonads in both juveniles and adults, implying that the neuropeptide is released into the bloodstream. It is suggested that in ancestral chordates, before the evolution of the pituitary, the hormone was released into the bloodstream and acted directly on the gonads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify determinants that form nonapeptide hormone binding domains of the white sucker Catostomus commersoni [Arg8]vasotocin receptor, chimeric constructs encoding parts of the vasotocin receptor and parts of the isotocin receptor have been analyzed by [(3,5-3H)Tyr2, Arg8]vasotocin binding to membranes of human embryonic kidney cells previously transfected with the different cDNA constructs and by functional expression studies in Xenopus laevis oocytes injected with mutant cRNAs. The results indicate that the N terminus and a region spanning the second extracellular loop and its flanking transmembrane segments, which contains a number of amino acid residues that are conserved throughout the nonapeptide receptor family, contribute to the affinity of the receptor for its ligand. Nonapeptide selectivity, however, is mainly defined by transmembrane region VI and the third extracellular loop. These results are complemented by a molecular model of the vasotocin receptor obtained by aligning its sequence with those of other G-protein coupled receptors as well as that of bacteriorhodopsin. The model indicates that amino acid residues of transmembrane regions II-VII that are located close to the extracellular surface also contribute to the binding of vasotocin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doxorubicin (DOX) and its daunosamine-modified derivative, 2-pyrrolino-DOX, which is 500-1000 times more active than DOX, were incorporated into agonistic and antagonistic analogs of luteinizing hormone-releasing hormone (LH-RH). The conjugation of DOX with LH-RH analogs was performed by using N-(9-fluorenylmethoxycarbonyl)-DOX-14-O-hemiglutarate, a dicarboxylic acid ester derivative of DOX. Coupling this derivative covalently to the epsilon-amino group of the D-Lys side chain of agonist [D-Lys6]LH-RH or antagonistic analog AC-D-Nal(2)-D-Phe(4Cl)-D-Pal(3)-Ser-Tyr-D-Lys-Leu-Arg-Pro-D-Ala-NH 2 [where Nal(2) = 3-(2-naphthyl)alanine, Pal(3) = 3-(3-pyridyl)alanine, and Phe(4CI) = 4-chlorophenylalanine] was followed by the removal of the 9-fluorenylmethoxycarbonyl protective group to yield cytotoxic derivatives of LH-RH analogs containing DOX. From these DOX containing LH-RH hybrids, intensely potent analogs with daunosamine-modified derivatives of DOX can be readily formed. Thus, cytotoxic LH-RH agonist containing DOX (AN-152) can be converted in a 66% yield by a reaction with a 30-fold excess of 4-iodobutyraldehyde in N,N-dimethylformamide into a derivative having 2-pyrrolino-DOX (AN-207). Hybrid molecules AN-152 and AN-207 fully preserve the cytotoxic activity of their radicals, DOX or 2-pyrrolino-DOX, respectively, in vitro, and also retain the high binding affinity of the peptide hormone portion of the conjugates to rat pituitary receptors for LH-RH. These highly potent cytotoxic analogs of LH-RH were designed as targeted anti-cancer agents for the treatment of various tumors that possess receptors for the carrier peptide. Initial in vivo studies show that the hybrid molecules are much less toxic than the respective cytotoxic radicals incorporated and significantly more active in inhibiting tumor growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast two-hybrid system was used to isolate a clone from a 17-day-old mouse embryo cDNA library that codes for a novel 812-aa long protein fragment, glucocorticoid receptor-interacting protein 1 (GRIP1), that can interact with the hormone binding domain (HBD) of the glucocorticoid receptor. In the yeast two-hybrid system and in vitro, GRIP1 interacted with the HBDs of the glucocorticoid, estrogen, and androgen receptors in a hormone-regulated manner. When fused to the DNA binding domain of a heterologous protein, the GRIP1 fragment activated a reporter gene containing a suitable enhancer site in yeast cells and in mammalian cells, indicating that GRIP1 contains a transcriptional activation domain. Overexpression of the GRIP1 fragment in mammalian cells interfered with hormone-regulated expression of mouse mammary tumor virus-chloramphenicol acetyltransferase gene and constitutive expression of cytomegalovirus-beta-galactosidase reporter gene, but not constitutive expression from a tRNA gene promoter. This selective squelching activity suggests that GRIM can interact with an essential component of the RNA polymerase II transcription machinery. Finally, while a steroid receptor HBD fused with a GAL4 DNA binding domain did not, by itself, activate transcription of a reporter gene in yeast, coexpression of this fusion protein with GRIP1 strongly activated the reporter gene. Thus, in yeast, GRIP1 can serve as a coactivator, potentiating the transactivation functions in steroid receptor HBDs, possibly by acting as a bridge between HBDs of the receptors and the basal transcription machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One distinctive effect on T-cell development was analyzed by selectively increasing serum prolactin (PRL) concentration in thymus-grafted congenitally athymic nude mice and by neutralizing PRL in suspension cultures of thymus from 1-day-old neonatal mice. Flow cytometric analysis of single-positive CD4+ and CD8+ cells derived from inguinal lymph nodes revealed a CD4/CD8 cell ratio of 2.2 +/- 0.18 (mean +/- SEM) in thymus-grafted nude mice that is similar to the ratio for immune-competent BALB/c mice (2.0 +/- 0.06). Addition of the pituitary to thymus-grafted nude mice significantly elevated serum PRL (P < 0.005) and increased the CD4/CD8 cell ratio (2.8 +/- 0.12; P < 0.005), demonstrating preferential stimulation of CD4+ cell development. T cells in nude mice receiving sham (submandibular salivary gland) or pituitary grafts alone were below detectable levels. Suspension cultures of neonatal thymus treated with anti-mouse PRL antiserum resulted in 20% and 30% decreases in double-positive CD4+8+ thymocytes and thymocyte viability, respectively. A 10-fold increase in double-negative CD4-8- thymocytes expressing the interleukin 2 receptor alpha chain, CD25, was also observed concurrently. Our findings illustrate an important way in which PRL may participate in two interrelated mechanisms: the regulation of peripheral single-positive cells and the maintenance of thymocyte viability during the double-positive stage of intrathymic differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is well characterized for its neurotrophic actions on peripheral sensory and sympathetic neurons and on central cholinergic neurons of the basal forebrain. Recent evidence, however, has shown high levels of NGF to be present in a variety of biological fluids after inflammatory and autoimmune responses, suggesting that NGF is a mediator of immune interactions. Increased NGF serum levels have been reported in both humans and experimental animal models of psychological and physical stress, thus implicating NGF in neuroendocrine interactions as well. The possible source(s) and the regulatory mechanisms involved in the control of serum NGF levels, however, still remain to be elucidated. We now report the presence of both NGF gene transcripts and protein in the anterior pituitary. Immunofluorescence analysis indicated that hypophysial NGF is selectively localized in mammotroph cells and stored in secretory granules. NGF is cosecreted with prolactin from mammotroph cells by a neurotransmitter-dependent mechanism that can be pharmacologically regulated. Activation of the dopamine D2 receptor subtype, which physiologically controls prolactin release, resulted in a complete inhibition of vasoactive intestinal peptide-stimulated NGF secretion in vitro, whereas the specific D2 antagonist (-)-sulpiride stimulated NGF secretion in vivo, suggesting that the anterior pituitary is a possible source of circulating NGF. Given the increased NGF serum levels in stressful conditions and the newly recognized immunoregulatory function of this protein, NGF, together with prolactin, may thus be envisaged as an immunological alerting signal under neuronal control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thyroid hormone nuclear receptors (TRs) are ligand-dependent transcriptional factors that regulate growth, differentiation, and development. The molecular mechanisms by which TRs mediate these effects are unclear. One prevailing hypothesis suggests that TRs may cooperate with other transcriptional factors to mediate their biological effects. In this study, we tested this hypothesis by examining whether the activity of TRs is modulated by the tumor suppressor p53. p53 is a nuclear protein that regulates gene expression via sequence-specific DNA binding and/or direct protein-protein interaction. We found that the human TR subtype beta 1 (h-TR beta 1) physically interacted with p53 via its DNA binding domain. As a result of this physical interaction, binding of h-TR beta 1 to its hormone response elements either as homodimer or as a heterodimer with the retinoic X receptor was inhibited by p53 in a concentration-dependent manner. In transfected cells, wild-type p53 repressed the hormone-dependent transcriptional activation of h-TR beta 1. In contrast, mutant p53 either had no effect or activated the transcriptional activity of h-TR beta 1 depending on the type of hormone response elements. These results indicate the gene regulating activity of TRs was modulated by p53, suggesting that the cross talk between these two transcriptional factors may play an important role in the biology of normal and cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromogranin B (CgB, secretogranin I) is a widespread constituent of neuroendocrine secretory granules whose function is unknown. To determine whether CgB affects the sorting of peptide hormone and neuropeptide precursors to secretory granules, we overexpressed CgB in AtT-20 cells, which exhibit an only moderate capacity to sort proopiomelanocortin and proteolytic fragments derived therefrom. In mock-transfected AtT-20 cells, a substantial proportion of newly synthesized proopiomelanocortin and its two primary proteolytic products generated in the trans-Golgi network, the N-terminal 23-kDa fragment containing adrenocorticotropin and the C-terminal beta-lipotropin fragment, was secreted via the constitutive pathway. Two- to three-fold overexpression of CgB markedly reduced the constitutive secretion of the 23-kDa fragment, but not beta-lipotropin and tripled the amount of adrenocorticotropin generated and stored in secretory granules. Our results indicate the existence of neuroendocrine-specific helper proteins which promote the sorting from the trans-Golgi network to secretory granules of certain processing intermediates derived from peptide hormone and neuropeptide precursors and demonstrate that CgB functions as such.