959 resultados para Project monitoring
Resumo:
While the emission rate of ultrafine particles has been measured and quantified, there is very little information on the emission rates of ions and charged particles from laser printers. This paper describes a methodology that can be adopted for measuring the surface charge density on printed paper and the ion and charged particle emissions during operation of a high-emitting laser printer and shows how emission rates of ultrafine particles, ions and charged particles may be quantified using a controlled experiment within a closed chamber.
Resumo:
The Texas Department of Transportation (TxDOT) is concerned about the widening gap between pavement preservation needs and available funding. Thus, the TxDOT Austin District Pavement Engineer (DPE) has investigated methods to strategically allocate available pavement funding to potential projects that improve the overall performance of the District and Texas highway systems. The primary objective of the study presented in this paper is to develop a network-level project screening and ranking method that supports the Austin District 4-year pavement management plan development. The study developed candidate project selection and ranking algorithms that evaluated pavement conditions of each project candidate using data contained in the Pavement Management Information system (PMIS) database and incorporated insights from Austin District pavement experts; and implemented the developed method and supporting algorithm. This process previously required weeks to complete, but now requires about 10 minutes including data preparation and running the analysis algorithm, which enables the Austin DPE to devote more time and resources to conducting field visits, performing project-level evaluation and testing candidate projects. The case study results showed that the proposed method assisted the DPE in evaluating and prioritizing projects and allocating funds to the right projects at the right time.
Resumo:
Important differences exist in how service firms operate in comparison with manufacturing firms (c.f. Johne & Storey, 1998; Tether, 2002). Despite these significant differences, not much is known whether these differences extrapolate to entrepreneurship in the services industry. This study seeks to address this gap by investigating how value creation occurs when project-oriented firms1 adopt client adaptiveness as part of their entrepreneurial posture. Specifically, we examine the effect of client adaptiveness on sustained competitive advantage. Client adaptiveness is conceptualized as the extent to which an organization engages in identifying and responding to perceived client needs and wants which reflects the service firm’s propensity to dynamically synchronize with the project/client requirements.
Resumo:
The QUT Centre for Subtropical Design reviewed tools and indices that measure ‘liveability’ on behalf of the Brisbane Development Association. This review provides insight into the concept of ‘liveability’ and how various international and local tools measure or value ‘liveability’ of cities. Liveability is subjective, and can mean different things to different individuals depending upon their situation and lifecycle stage, and is therefore difficult to define. Essentially, the term ‘liveability’ constitutes thoughts of quality of life and wellbeing of residents in urban environments.
Resumo:
Quantifying spatial and/or temporal trends in environmental modelling data requires that measurements be taken at multiple sites. The number of sites and duration of measurement at each site must be balanced against costs of equipment and availability of trained staff. The split panel design comprises short measurement campaigns at multiple locations and continuous monitoring at reference sites [2]. Here we present a modelling approach for a spatio-temporal model of ultrafine particle number concentration (PNC) recorded according to a split panel design. The model describes the temporal trends and background levels at each site. The data were measured as part of the “Ultrafine Particles from Transport Emissions and Child Health” (UPTECH) project which aims to link air quality measurements, child health outcomes and a questionnaire on the child’s history and demographics. The UPTECH project involves measuring aerosol and particle counts and local meteorology at each of 25 primary schools for two weeks and at three long term monitoring stations, and health outcomes for a cohort of students at each school [3].
Resumo:
The overall aim of this project was to contribute to existing knowledge regarding methods for measuring characteristics of airborne nanoparticles and controlling occupational exposure to airborne nanoparticles, and to gather data on nanoparticle emission and transport in various workplaces. The scope of this study involved investigating the characteristics and behaviour of particles arising from the operation of six nanotechnology processes, subdivided into nine processes for measurement purposes. It did not include the toxicological evaluation of the aerosol and therefore, no direct conclusion was made regarding the health effects of exposure to these particles. Our research included real-time measurement of sub, and supermicrometre particle number and mass concentration, count median diameter, and alveolar deposited surface area using condensation particle counters, an optical particle counter, DustTrak photometer, scanning mobility particle sizer, and nanoparticle surface area monitor, respectively. Off-line particle analysis included scanning and transmission electron microscopy, energy-dispersive x-ray spectrometry, and thermal optical analysis of elemental carbon. Sources of fibrous and non-fibrous particles were included.
Resumo:
This work was motivated by the limited knowledge on personal exposure to ultrafine (UF) particles, and it quantifies school children’s personal exposure to UF particles, in terms of number, using Philips Aerasense Nano Tracers (NTs). This study is being conducted in conjunction with the “Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH)” project, which aims to determine the relationship between exposure to traffic related UF particles and children’s health (http://www.ilaqh.qut.edu.au/Misc/UPTECH%20 Home.htm). To achieve this, air quality and some health data are being collected at 25 schools within the Brisbane Metropolitan Area in Australia over two years. The school children’s personal exposure to UF particles in the first 17 schools are presented here. These schools were tested between Oct 2010 and Dec 2011. Data collection is expected to be complete by mid 2012.
Resumo:
Vehicle emissions have been linked to detrimental health effects with children thought to be more susceptible (See e.g., Ryan et al 2005). In an urban environment a major source of organic aerosols (OA) are vehicle emissions. The ambient concentration of OA is dynamic in nature and the use of an aerosol mass spectrometer can achieve the necessary temporal resolution to capture the daily variation of OA (Jimenez et al 2009). Currently there is a limited understanding of effects of long term exposure to traffic emissions on children’s health. In the present study, we used an aerosol mass spectrometer to monitor OA and determine children’s potential exposure at school to traffic emissions.In this paper, we present the preliminary results of this investigation. The study is a part of a larger project aimed at gaining a holistic picture of the exposure of children to traffic related pollutants, known as UPTECH (www.ilaqh.qut.edu.au/Misc/ UPTECH%20Home.htm).
Resumo:
Program management serves as an overall vehicle for the transformation effort. It aims to support the implementation of the decided strategy in order to achieve the expected benefits in a business transformation initiative. A program is defined as a group of related projects managed in a coordinated way to obtain benefits and control not available when managing them individually . A project on the other hand, is a temporary endeavor undertaken to create a unique product, service, or result. Projects tend to have definite start and finish points, with the aim of delivering a predetermined output, giving them relatively clear development paths from initiation to delivery. Programs, on the contrary, exist to create value by enriching the management of projects in isolation. Programs typically have a more strategic vision of the desired end goal, but no clearly defined path to get there. Therefore, program management is expected to deal with the uncertainty surrounding the achievement of the vision, whereas projects work best where the outputs can be well defined.
Resumo:
Background On-site wastewater treatment system (OWTS) siting, design and management has traditionally been based on site specific conditions with little regard to the surrounding environment or the cumulative effect of other systems in the environment. The general approach has been to apply the same framework of standards and regulations to all sites equally, regardless of the sensitivity, or lack thereof, to the receiving environment. Consequently, this has led to the continuing poor performance and failure of on-site systems, resulting in environmental and public health consequences. As a result, there is increasing realisation that more scientifically robust evaluations in regard to site assessment and the underlying ground conditions are needed. Risk-based approaches to on-site system siting, design and management are considered the most appropriate means of improvement to the current standards and codes for on-site wastewater treatment systems. The Project Research in relation to this project was undertaken within the Gold Coast City Council region, the major focus being the semi-urban, rural residential and hinterland areas of the city that are not serviced by centralised treatment systems. The Gold Coast has over 15,000 on-site systems in use, with approximately 66% being common septic tank-subsurface dispersal systems. A recent study evaluating the performance of these systems within the Gold Coast area showed approximately 90% were not meeting the specified guidelines for effluent treatment and dispersal. The main focus of this research was to incorporate strong scientific knowledge into an integrated risk assessment process to allow suitable management practices to be set in place to mitigate the inherent risks. To achieve this, research was undertaken focusing on three main aspects involved with the performance and management of OWTS. Firstly, an investigation into the suitability of soil for providing appropriate effluent renovation was conducted. This involved detailed soil investigations, laboratory analysis and the use of multivariate statistical methods for analysing soil information. The outcomes of these investigations were developed into a framework for assessing soil suitability for effluent renovation. This formed the basis for the assessment of OWTS siting and design risks employed in the developed risk framework. Secondly, an assessment of the environmental and public health risks was performed specifically related the release of contaminants from OWTS. This involved detailed groundwater and surface water sampling and analysis to assess the current and potential risks of contamination throughout the Gold Coast region. Additionally, the assessment of public health risk incorporated the use of bacterial source tracking methods to identify the different sources of fecal contamination within monitored regions. Antibiotic resistance pattern analysis was utilised to determine the extent of human faecal contamination, with the outcomes utilised for providing a more indicative public health assessment. Finally, the outcomes of both the soil suitability assessment and ground and surface water monitoring was utilised for the development of the integrated risk framework. The research outcomes achieved through this project enabled the primary research aims and objects to be accomplished. This in turn would enable Gold Coast City Council to provide more appropriate assessment and management guidelines based on robust scientific knowledge which will ultimately ensure that the potential environmental and public health impacts resulting from on-site wastewater treatment is minimised. As part of the implementation of suitable management strategies, a critical point monitoring program (CPM) was formulated. This entailed the identification of the key critical parameters that contribute to the characterised risks at monitored locations within the study area. The CPM will allow more direct procedures to be implemented, targeting the specific hazards at sensitive areas throughout Gold Coast region.
Resumo:
Background The onsite treatment of sewage and effluent disposal within the premises is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the seemingly low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. Therefore it is important that careful consideration is given to the design and location of onsite sewage treatment systems. It requires an understanding of the factors that influence treatment performance. The use of subsurface effluent absorption systems is the most common form of effluent disposal for onsite sewage treatment and particularly for septic tanks. Additionally in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Therefore location specific factors will play a key role in this context. The project The primary aims of the research project are: • to relate treatment performance of onsite sewage treatment systems to soil conditions at site; • to identify important areas where there is currently a lack of relevant research knowledge and is in need of further investigation. These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of the research project has been on septic tanks. Therefore by implication the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. In the evaluation to be undertaken, the treatment performance of soil absorption systems will be related to the physico-chemical characteristics of the soil. Five broad categories of soil types have been considered for this purpose. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each soil types. In the initial phase of the investigation, though the majority of the systems evaluated were septic tanks, a small number of aerobic wastewater treatment systems (AWTS) were also included. This was primarily to compare the effluent quality of systems employing different generic treatment processes. It is important to note that the number of different types of systems investigated was relatively small. As such this does not permit a statistical analysis to be undertaken of the results obtained. This is an important issue considering the large number of parameters that can influence treatment performance and their wide variability. The report This report is the second in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The work undertaken included site investigation and testing of sewage effluent and soil samples taken at distances of 1 and 3 m from the effluent disposal area. The project component discussed in the current report formed the basis for the more detailed investigation undertaken subsequently. The outcomes from the initial studies have been discussed, which enabled the identification of factors to be investigated further. Primarily, this report contains the results of the field monitoring program, the initial analysis undertaken and preliminary conclusions. Field study and outcomes Initially commencing with a list of 252 locations in 17 different suburbs, a total of 22 sites in 21 different locations were monitored. These sites were selected based on predetermined criteria. To obtain house owner agreement to participate in the monitoring study was not an easy task. Six of these sites had to be abandoned subsequently due to various reasons. The remaining sites included eight septic systems with subsurface effluent disposal and treating blackwater or combined black and greywater, two sites treating greywater only and six sites with AWTS. In addition to collecting effluent and soil samples from each site, a detailed field investigation including a series of house owner interviews were also undertaken. Significant observations were made during the field investigations. In addition to site specific observations, the general observations include the following: • Most house owners are unaware of the need for regular maintenance. Sludge removal has not been undertaken in any of the septic tanks monitored. Even in the case of aerated wastewater treatment systems, the regular inspections by the supplier is confined only to the treatment system and does not include the effluent disposal system. This is not a satisfactory situation as the investigations revealed. • In the case of separate greywater systems, only one site had a suitably functioning disposal arrangement. The general practice is to employ a garden hose to siphon the greywater for use in surface irrigation of the garden. • In most sites, the soil profile showed significant lateral percolation of effluent. As such, the flow of effluent to surface water bodies is a distinct possibility. • The need to investigate the subsurface condition to a depth greater than what is required for the standard percolation test was clearly evident. On occasion, seemingly permeable soil was found to have an underlying impermeable soil layer or vice versa. The important outcomes from the testing program include the following: • Though effluent treatment is influenced by the physico-chemical characteristics of the soil, it was not possible to distinguish between the treatment performance of different soil types. This leads to the hypothesis that effluent renovation is significantly influenced by the combination of various physico-chemical parameters rather than single parameters. This would make the processes involved strongly site specific. • Generally the improvement in effluent quality appears to take place only within the initial 1 m of travel and without any appreciable improvement thereafter. This relates only to the degree of improvement obtained and does not imply that this quality is satisfactory. This calls into question the value of adopting setback distances from sensitive water bodies. • Use of AWTS for sewage treatment may provide effluent of higher quality suitable for surface disposal. However on the whole, after a 1-3 m of travel through the subsurface, it was not possible to distinguish any significant differences in quality between those originating from septic tanks and AWTS. • In comparison with effluent quality from a conventional wastewater treatment plant, most systems were found to perform satisfactorily with regards to Total Nitrogen. The success rate was much lower in the case of faecal coliforms. However it is important to note that five of the systems exhibited problems with regards to effluent disposal, resulting in surface flow. This could lead to possible contamination of surface water courses. • The ratio of TDS to EC is about 0.42 whilst the optimum recommended value for use of treated effluent for irrigation should be about 0.64. This would mean a higher salt content in the effluent than what is advisable for use in irrigation. A consequence of this would be the accumulation of salts to a concentration harmful to crops or the landscape unless adequate leaching is present. These relatively high EC values are present even in the case of AWTS where surface irrigation of effluent is being undertaken. However it is important to note that this is not an artefact of the treatment process but rather an indication of the quality of the wastewater generated in the household. This clearly indicates the need for further research to evaluate the suitability of various soil types for the surface irrigation of effluent where the TDS/EC ratio is less than 0.64. • Effluent percolating through the subsurface absorption field may travel in the form of dilute pulses. As such the effluent will move through the soil profile forming fronts of elevated parameter levels. • The downward flow of effluent and leaching of the soil profile is evident in the case of podsolic, lithosol and kransozem soils. Lateral flow of effluent is evident in the case of prairie soils. Gleyed podsolic soils indicate poor drainage and ponding of effluent. In the current phase of the research project, a number of chemical indicators such as EC, pH and chloride concentration were employed as indicators to investigate the extent of effluent flow and to understand how soil renovates effluent. The soil profile, especially texture, structure and moisture regime was examined more in an engineering sense to determine the effect of movement of water into and through the soil. However it is not only the physical characteristics, but the chemical characteristics of the soil also play a key role in the effluent renovation process. Therefore in order to understand the complex processes taking place in a subsurface effluent disposal area, it is important that the identified influential parameters are evaluated using soil chemical concepts. Consequently the primary focus of the next phase of the research project will be to identify linkages between various important parameters. The research thus envisaged will help to develop robust criteria for evaluating the performance of subsurface disposal systems.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
Traffic emissions are considered as a major source of pollutants, particularly ultrafine particles, in the urban environment. There is an increased concern about airborne particles not only because of their environmental effects but also due to their potential adverse health effects on humans. There have been a number of studies related to the number concentration and size distribution of these particles but studies on the chemical composition of aerosols, especially in the school environment, are very limited. Mejia et. al (2011) reviewed studies on the exposure to and impact of air pollutants on school children and found that there were only a handful of studies on this topic. Therefore, the main focus of this research is on an analysis of the chemical composition of airborne particles, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools, as a part of “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH) project. The aim of the present study was to find out the concentrations of different Volatile Organic Compounds (VOCs) in both outdoor and indoor locations from six different schools in Brisbane.
Resumo:
This paper presents a summary of the key findings of the TTF TPACK Survey developed and administered for the Teaching the Teachers for the Future (TTF) Project implemented in 2011. The TTF Project, funded by an Australian Government ICT Innovation Fund grant, involved all 39 Australian Higher Education Institutions which provide initial teacher education. TTF data collections were undertaken at the end of Semester 1 (T1) and at the end of Semester 2 (T2) in 2011. A total of 12881 participants completed the first survey (T1) and 5809 participants completed the second survey (T2). Groups of like-named items from the T1 survey were subject to a battery of complementary data analysis techniques. The psychometric properties of the four scales: Confidence - teacher items; Usefulness - teacher items; Confidence - student items; Usefulness- student items, were confirmed both at T1 and T2. Among the key findings summarised, at the national level, the scale: Confidence to use ICT as a teacher showed measurable growth across the whole scale from T1 to T2, and the scale: Confidence to facilitate student use of ICT also showed measurable growth across the whole scale from T1 to T2. Additional key TTF TPACK Survey findings are summarised.
Resumo:
While there are sources of ions both outdoors and indoors, ventilation systems can introduce as well as remove ions from the air. As a result, indoor ion concentrations are not directly related to air exchange rates in buildings. In this study, we attempt to relate these quantities with the view of understanding how charged particles may be introduced into indoor spaces.