954 resultados para Production peasant family
Resumo:
Rainfall variability is a challenge to sustainable and pro. table cattle production in northern Australia. Strategies recommended to manage for rainfall variability, like light or variable stocking, are not widely adopted. This is due partly to the perception that sustainability and profitability are incompatible. A large, long-term grazing trial was initiated in 1997 in north Queensland, Australia, to test the effect of different grazing strategies on cattle production. These strategies are: (i) constant light stocking (LSR) at long-term carrying capacity (LTCC); (ii) constant heavy stocking (HSR) at twice LTCC; (iii) rotational wet-season spelling (R/Spell) at 1.5 LTCC; (iv) variable stocking (VAR), with stocking rates adjusted in May based on available pasture; and (v) a Southern Oscillation Index (SOI) variable strategy, with stocking rates adjusted in November, based on available pasture and SOI seasonal forecasts. Animal performance varied markedly over the 10 years for which data is presented, due to pronounced differences in rainfall and pasture availability. Nonetheless, lighter stocking at or about LTCC consistently gave the best individual liveweight gain (LWG), condition score and skeletal growth; mean LWG per annum was thus highest in the LSR (113 kg), intermediate in the R/Spell (104 kg) and lowest in the HSR(86 kg). MeanLWGwas 106 kg in the VAR and 103 kg in the SOI but, in all years, the relative performance of these strategies was dependent upon the stocking rate applied. After 2 years on the trial, steers from lightly stocked strategies were 60-100 kg heavier and received appreciable carcass price premiums at the meatworks compared to those under heavy stocking. In contrast, LWG per unit area was greatest at stocking rates of about twice LTCC; mean LWG/ha was thus greatest in the HSR (21 kg/ha), but this strategy required drought feeding in four of the 10 years and was unsustainable. Although LWG/ha was lower in the LSR (mean 14 kg/ha), or in strategies that reduced stocking rates in dry years like the VAR(mean 18 kg/ha) and SOI (mean 17 kg/ha), these strategies did not require drought feeding and appeared sustainable. The R/Spell strategy (mean 16 kg/ha) was compromised by an ill-timed fire, but also performed satisfactorily. The present results provide important evidence challenging the assumption that sustainable management in a variable environment is unprofitable. Further research is required to fully quantify the long-term effects of these strategies on land condition and profitability and to extrapolate the results to breeder performance at the property level.
Resumo:
An experiment using herds of similar to 20 cows (farmlets) assessed the effects of high stocking rates on production and profitability of feeding systems based on dryland and irrigated perennial ryegrass-based pastures in a Mediterranean environment in South Australia over 4 years. A target level of milk production of 7000 L/cow.year was set, based on predicted intakes of 2.7 t DM/cow.year as concentrates, pasture intakes from 1.5 to 2.7 t/cow.year and purchased fodder. In years 1 and 2, up to 1.5 t DM/cow.year of purchased fodder was used and in years 3 and 4 the amounts were increased if necessary to enable levels of milk production per cow to be maintained at target levels. Cows in dryland farmlets calved in March to May inclusive and were stocked at 2.5, 2.9, 3.3, 3.6 and 4.1 cows/ha, while those in irrigated farmlets calved in August to October inclusive and were stocked at 4.1, 5.2, 6.3 and 7.4 cows/ha. In the first 2 years, when inputs of purchased fodder were limited, milk production per cow was reduced with higher stocking rates (P < 0.01), but in years 3 and 4 there were no differences. Mean production was 7149 kg/cow.year in years 1 and 2, and 8162 kg/cow.year in years 3 and 4. Production per hectare was very closely related to stocking rate in all years (P < 0.01), increasing from 18 to 34 t milk/ha.year for dryland farmlets (1300 to 2200 kg milk solids/ha) and from 30 to 60 t milk/ha.year for irrigated farmlets (2200 to 4100 kg milk solids/ha). Almost all of these increases were attributed to the increases in grain and purchased fodder inputs associated with the increases in stocking rate. Net pasture accumulation rates and pasture harvest were generally not altered with stocking rate, though as stocking rate increased there was a change to more of the pasture being grazed and less conserved in both dryland and irrigated farmlets. Total pasture harvest averaged similar to 8 and 14 t DM/ha.year for dryland and irrigated pastures, respectively. An exception was at the highest stocking rate under irrigation, where pugging during winter was associated with a 14% reduction in annual pasture growth. There were several indications that these high stocking rates may not be sustainable without substantial changes in management practice. There were large and positive nutrient balances and associated increases in soil mineral content (P < 0.01), especially for phosphorus and nitrate nitrogen, with both stocking rate and succeeding years. Levels under irrigation were considerably higher (up to 90 and 240 mg/kg of soil for nitrate nitrogen and phosphorus, respectively) than under dryland pastures (60 and 140 mg/kg, respectively). Soil organic carbon levels did not change with stocking rate, indicating a high level of utilisation of forage grown. Weed ingress was also high (to 22% DM) in all treatments and especially in heavily stocked irrigated pastures during winter. It was concluded the higher stocking rates used exceeded those that are feasible for Mediterranean pastures in this environment and upper levels of stocking are suggested to be 2.5 cows/ha for dryland pastures and 5.2 cows/ha for irrigated pastures. To sustain these suggested stocking rates will require further development of management practices to avoid large increases in soil minerals and weed invasion of pastures.
Resumo:
The aquatic herb Limnocharis flava, native to tropical America, is the target of an eradication program in Queensland but little is known about its reproductive biology. Their field and glasshouse studies showed that seedlings exhibited relatively high survival (64%) and that fruits containing over 1000 seeds could be produced on young plants within 46 days, at any time of the year. Mature fruits, follicles and seeds were also buoyant. The authors findings were incorporated into the eradication program and influenced the frequency of infestation monitoring.
Resumo:
A total of 2115 heifers from two tropical genotypes (1007 Brahman and 1108 Tropical Composite) raised in four locations in northern Australia were ovarian-scanned every 4-6 weeks to determine the age at the first-observed corpus luteum (CL) and this was used to de. ne the age at puberty for each heifer. Other traits recorded at each time of ovarian scanning were liveweight, fat depths and body condition score. Reproductive tract size was measured close to the start of the first joining period. Results showed significant effects of location and birth month on the age at first CL and associated puberty traits. Genotypes did not differ significantly for the age or weight at first CL; however, Brahman were fatter at first CL and had a small reproductive tract size compared with that of Tropical Composite. Genetic analyses estimated the age at first CL to be moderately to highly heritable for Brahman (0.57) and Tropical Composite (0.52). The associated traits were also moderately heritable, except for reproductive tract size in Brahmans (0.03) and for Tropical Composite, the presence of an observed CL on the scanning day closest to the start of joining (0.07). Genetic correlations among puberty traits were mostly moderate to high and generally larger in magnitude for Brahman than for Tropical Composite. Genetic correlations between the age at CL and heifer- and steer-production traits showed important genotype differences. For Tropical Composite, the age at CL was negatively correlated with the heifer growth rate in their first postweaning wet season (-0.40) and carcass marbling score (-0.49), but was positively correlated with carcass P8 fat depth (0.43). For Brahman, the age at CL was moderately negatively genetically correlated with heifer measures of bodyweight, fatness, body condition score and IGF-I, in both their first postweaning wet and second dry seasons, but was positively correlated with the dry-season growth rate. For Brahman, genetic correlations between the age at CL and steer traits showed possible antagonisms with feedlot residual feed intake (-0.60) and meat colour (0.73). Selection can be used to change the heifer age at puberty in both genotypes, with few major antagonisms with steer- and heifer- production traits.
Resumo:
- P -General population, nonsmoking children (aged 5 to 12) and adolescents (aged 13 to 18) with their parents - I -Interventions with children and family members intended to deter tobacco use. Any components to change parenting behaviour, parental or sibling smoking behaviour, or family communication and interaction. - C -Usual practice, or a program of no family intervention - O -Smoking status of children who reported no use of tobacco at baseline.
Resumo:
The north Queensland banana industry is under pressure from government and community expectations to exhibit good environmental stewardship. The industry is situated on the high-rainfall north Queensland coast adjacent to 2 natural icons, the Great Barrier Reef to the east and World Heritage-listed rain forest areas to the west. The main environmental concern is agricultural industry pollutants harming the Great Barrier Reef. In addition to environmental issues the banana industry also suffers financial pressure from declining margins and production loss from tropical cyclones. As part of a broader government strategy to reduce land-based pollutants affecting the Great Barrier Reef, the formation of a pilot banana producers group to address these environmental and economic pressures was facilitated. Using an integrated farming systems approach, we worked collaboratively with these producers to conduct an environmental risk assessment of their businesses and then to develop best management practices (BMP) to address environmental concerns. We also sought input from technical experts to provide increased rigour for the environmental risk assessment and BMP development. The producers' commercial experience ensured new ideas for improved sustainable practices were constantly assessed through their profit-driven 'filter' thus ensuring economic sustainability was also considered. Relying heavily on the producers' knowledge and experience meant the agreed sustainable practices were practical, relevant and financially feasible for the average-sized banana business in the region. Expert input and review also ensured that practices were technically sound. The pilot group producers then implemented and adapted selected key practices on their farms. High priority practices addressed by the producers group included optimizing nitrogen fertilizer management to reduce runoff water nitrification, developing practical ground cover management to reduce soil erosion and improving integrated pest management systems to reduce pesticide use. To facilitate wider banana industry understanding and adoption of the BMP's developed by the pilot group, we conducted field days at the farms of the pilot group members. Information generated by the pilot group has had wider application to Australian horticulture and the process has been subsequently used with the north Queensland sugar industry. Our experiences have shown that integrated farming systems methodologies are useful in addressing complex issues like environmental and economic sustainability. We have also found that individual horticulture businesses need on-going technical support for change to more sustainable practices. One-off interventions have little impact, as farm improvement is usually an on-going incremental process. A key lesson from this project has been the need to develop practical, farm scale economic tools to clarify and demonstrate the financial impact of alternative management practices. Demonstrating continued profitability is critical to encourage widespread industry adoption of environmentally sustainable practices
Resumo:
Much research in understanding plant diseases has been undertaken, but there has been insufficient attention given to dealing with coordinated approaches to preventing and managing diseases. A global management approach is essential to the long-term sustainability of banana production. This approach would involve coordinated surveys, capacity building in developing countries, development of disease outbreak contingency plans and coordinated quarantine awareness, including on-line training in impact risk assessment and web-based diagnostic software. Free movement of banana plants and products between some banana-producing countries is causing significant pressure on the ability to manage diseases in banana. The rapid spread of Fusarium oxysporum f. sp. cubense 'tropical race 4' in Asia, bacterial wilts in Africa and Asia and black leaf streak [Mycosphaerella fijiensis] in Brazil and elsewhere are cases in point. The impact of these diseases is devastating, severely cutting family incomes and jeopardising food security around the globe. Agreements urgently need to be reached between governments to halt the movement of banana plants and products between banana-producing countries before it is too late and global food security is irreparably harmed. Black leaf streak, arguably the most serious banana disease, has become extremely difficult to control in commercial plantations in various parts of the world. Sometimes in excess of 50 fungicide sprays have to be applied each year. Disease eradication and effective disease control is not possible because there is no control of disease inoculum in non-commercial plantings in these locations. Additionally, there have been enormous sums of money invested in international banana breeding programmes over many years only to see the value of hybrid products lost too soon. 'Goldfinger' (AAAB, syn. 'FHIA-01'), for example, has recently been observed severely affected by black leaf streak in Samoa. Resistant cultivars alone cannot be relied upon in the fight against this disease. Real progress in control may only come when the local communities are engaged and become actively involved in regional programmes. Global recommendations are long overdue and urgently needed to help ensure the long-term sustainable utilisation of the products of the breeding programmes.
Resumo:
Bi5Ti3FeO15 and Bi7Ti3Fe3O21 which are n=4 and n=6 members of the family of oxides of the general formula (Bi2O2)2+(An−1BnO3n+1)2− show unusual superstructures, possibly due to cation ordering. Bi5Ti3FeO15; Bi7Ti3Fe3O21; oxides.
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C-4 plants for the production of poly[(R)-3-hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield-potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing -ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl-CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB-producing sugarcane containing the -ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2x10(6)Da. These results are a major step forward in engineering a high biomass C-4 grass for the commercial production of PHB.
Resumo:
Steer liveweight gains were measured in an extensive grazing study conducted in a Heteropogon contortus (black speargrass) pasture in central Queensland between 1988 and 2001. Treatments included a range of stocking rates in native pastures, legume-oversown native pasture and animal diet supplement/spring-burning pastures. Seasonal rainfall throughout this study was below the long-term mean. Mean annual pasture utilisation ranged from 13 to 61%. Annual liveweight gains per head in native pasture were highly variable among years and ranged from a low of 43 kg/steer at 2 ha/steer to a high of 182 kg/steer at 8 ha/steer. Annual liveweight gains were consistently highest at light stocking and decreased with increasing stocking rate. Annual liveweight gain per hectare increased linearly with stocking rate. These stocking rate trends were also evident in legume-oversown pastures although both the intercept and slope of the regressions for legume-oversown pastures were higher than that for native pasture. The highest annual liveweight gain for legume-oversown pasture was 221 kg/steer at 4 ha/steer. After 13 years, annual liveweight gain per unit area occurred at the heaviest stocking rate despite deleterious changes in the pasture. Across all years, the annual liveweight advantage for legume-oversown pastures was 37 kg/steer. Compared with native pasture, changes in annual liveweight gain with burning were variable. It was concluded that cattle productivity is sustainable when stocking rates are maintained at 4 ha/steer or lighter (equivalent to a utilisation rate around 30%). Although steer liveweight gain occurred at all stocking rates and economic returns were highest at heaviest stocking rates, stocking rates heavier than 4 ha/steer are unsustainable because of their long-term impact on pasture productivity.