956 resultados para Probabilistic robotics
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
AMADEUS is a dexterous subsea robot hand incorporating force and slip contact sensing, using fluid filled tentacles for fingers. Hydraulic pressure variations in each of three flexible tubes (bellows) in each finger create a bending moment, and consequent motion or increase in contact force during grasping. Such fingers have inherent passive compliance, no moving parts, and are naturally depth pressure-compensated, making them ideal for reliable use in the deep ocean. In addition to the mechanical design, development of the hand has also considered closed loop finger position and force control, coordinated finger motion for grasping, force and slip sensor development/signal processing, and reactive world modeling/planning for supervisory `blind grasping¿. Initially, the application focus is for marine science tasks, but broader roles in offshore oil and gas, salvage, and military use are foreseen. Phase I of the project is complete, with the construction of a first prototype. Phase I1 is now underway, to deploy the hand from an underwater robot arm, and carry out wet trials with users.
Resumo:
This paper reports on the purpose, design, methodology and target audience of E-learning courses in forensic interpretation offered by the authors since 2010, including practical experiences made throughout the implementation period of this project. This initiative was motivated by the fact that reporting results of forensic examinations in a logically correct and scientifically rigorous way is a daily challenge for any forensic practitioner. Indeed, interpretation of raw data and communication of findings in both written and oral statements are topics where knowledge and applied skills are needed. Although most forensic scientists hold educational records in traditional sciences, only few actually followed full courses that focussed on interpretation issues. Such courses should include foundational principles and methodology - including elements of forensic statistics - for the evaluation of forensic data in a way that is tailored to meet the needs of the criminal justice system. In order to help bridge this gap, the authors' initiative seeks to offer educational opportunities that allow practitioners to acquire knowledge and competence in the current approaches to the evaluation and interpretation of forensic findings. These cover, among other aspects, probabilistic reasoning (including Bayesian networks and other methods of forensic statistics, tools and software), case pre-assessment, skills in the oral and written communication of uncertainty, and the development of independence and self-confidence to solve practical inference problems. E-learning was chosen as a general format because it helps to form a trans-institutional online-community of practitioners from varying forensic disciplines and workfield experience such as reporting officers, (chief) scientists, forensic coordinators, but also lawyers who all can interact directly from their personal workplaces without consideration of distances, travel expenses or time schedules. In the authors' experience, the proposed learning initiative supports participants in developing their expertise and skills in forensic interpretation, but also offers an opportunity for the associated institutions and the forensic community to reinforce the development of a harmonized view with regard to interpretation across forensic disciplines, laboratories and judicial systems.
Resumo:
A mobile ad hoc network (MANET) is a decentralized and infrastructure-less network. This thesis aims to provide support at the system-level for developers of applications or protocols in such networks. To do this, we propose contributions in both the algorithmic realm and in the practical realm. In the algorithmic realm, we contribute to the field by proposing different context-aware broadcast and multicast algorithms in MANETs, namely six-shot broadcast, six-shot multicast, PLAN-B and ageneric algorithmic approach to optimize the power consumption of existing algorithms. For each algorithm we propose, we compare it to existing algorithms that are either probabilistic or context-aware, and then we evaluate their performance based on simulations. We demonstrate that in some cases, context-aware information, such as location or signal-strength, can improve the effciency. In the practical realm, we propose a testbed framework, namely ManetLab, to implement and to deploy MANET-specific protocols, and to evaluate their performance. This testbed framework aims to increase the accuracy of performance evaluation compared to simulations, while keeping the ease of use offered by the simulators to reproduce a performance evaluation. By evaluating the performance of different probabilistic algorithms with ManetLab, we observe that both simulations and testbeds should be used in a complementary way. In addition to the above original contributions, we also provide two surveys about system-level support for ad hoc communications in order to establish a state of the art. The first is about existing broadcast algorithms and the second is about existing middleware solutions and the way they deal with privacy and especially with location privacy. - Un réseau mobile ad hoc (MANET) est un réseau avec une architecture décentralisée et sans infrastructure. Cette thèse vise à fournir un support adéquat, au niveau système, aux développeurs d'applications ou de protocoles dans de tels réseaux. Dans ce but, nous proposons des contributions à la fois dans le domaine de l'algorithmique et dans celui de la pratique. Nous contribuons au domaine algorithmique en proposant différents algorithmes de diffusion dans les MANETs, algorithmes qui sont sensibles au contexte, à savoir six-shot broadcast,six-shot multicast, PLAN-B ainsi qu'une approche générique permettant d'optimiser la consommation d'énergie de ces algorithmes. Pour chaque algorithme que nous proposons, nous le comparons à des algorithmes existants qui sont soit probabilistes, soit sensibles au contexte, puis nous évaluons leurs performances sur la base de simulations. Nous montrons que, dans certains cas, des informations liées au contexte, telles que la localisation ou l'intensité du signal, peuvent améliorer l'efficience de ces algorithmes. Sur le plan pratique, nous proposons une plateforme logicielle pour la création de bancs d'essai, intitulé ManetLab, permettant d'implémenter, et de déployer des protocoles spécifiques aux MANETs, de sorte à évaluer leur performance. Cet outil logiciel vise à accroître la précision desévaluations de performance comparativement à celles fournies par des simulations, tout en conservant la facilité d'utilisation offerte par les simulateurs pour reproduire uneévaluation de performance. En évaluant les performances de différents algorithmes probabilistes avec ManetLab, nous observons que simulateurs et bancs d'essai doivent être utilisés de manière complémentaire. En plus de ces contributions principales, nous fournissons également deux états de l'art au sujet du support nécessaire pour les communications ad hoc. Le premier porte sur les algorithmes de diffusion existants et le second sur les solutions de type middleware existantes et la façon dont elles traitent de la confidentialité, en particulier celle de la localisation.
Resumo:
The aim of this study was to evaluate the forensic protocol recently developed by Qiagen for the QIAsymphony automated DNA extraction platform. Samples containing low amounts of DNA were specifically considered, since they represent the majority of samples processed in our laboratory. The analysis of simulated blood and saliva traces showed that the highest DNA yields were obtained with the maximal elution volume available for the forensic protocol, that is 200 ml. Resulting DNA extracts were too diluted for successful DNA profiling and required a concentration. This additional step is time consuming and potentially increases inversion and contamination risks. The 200 ml DNA extracts were concentrated to 25 ml, and the DNA recovery estimated with real-time PCR as well as with the percentage of SGM Plus alleles detected. Results using our manual protocol, based on the QIAamp DNA mini kit, and the automated protocol were comparable. Further tests will be conducted to determine more precisely DNA recovery, contamination risk and PCR inhibitors removal, once a definitive procedure, allowing the concentration of DNA extracts from low yield samples, will be available for the QIAsymphony.
Resumo:
In this paper we consider diffusion of a passive substance C in a temporarily and spatially inhomogeneous two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of two substances A and B, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different diffusion coefficients of C in A and B, we find that the variance of the distribution function of the said substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic ansatz and are then able to identify the interface between A and B as the main cause for this nonlinear dependence. We argue that, finally, for very large times the here temporarily dependent diffusion "constant" goes like t-1/3 to a constant asymptotic value D¿. The latter is calculated approximately by employing the effective-medium approximation and by fitting the simulation data to the said time dependence.
Resumo:
The research reported in this series of article aimed at (1) automating the search of questioned ink specimens in ink reference collections and (2) at evaluating the strength of ink evidence in a transparent and balanced manner. These aims require that ink samples are analysed in an accurate and reproducible way and that they are compared in an objective and automated way. This latter requirement is due to the large number of comparisons that are necessary in both scenarios. A research programme was designed to (a) develop a standard methodology for analysing ink samples in a reproducible way, (b) comparing automatically and objectively ink samples and (c) evaluate the proposed methodology in forensic contexts. This report focuses on the last of the three stages of the research programme. The calibration and acquisition process and the mathematical comparison algorithms were described in previous papers [C. Neumann, P. Margot, New perspectives in the use of ink evidence in forensic science-Part I: Development of a quality assurance process for forensic ink analysis by HPTLC, Forensic Sci. Int. 185 (2009) 29-37; C. Neumann, P. Margot, New perspectives in the use of ink evidence in forensic science- Part II: Development and testing of mathematical algorithms for the automatic comparison of ink samples analysed by HPTLC, Forensic Sci. Int. 185 (2009) 38-50]. In this paper, the benefits and challenges of the proposed concepts are tested in two forensic contexts: (1) ink identification and (2) ink evidential value assessment. The results show that different algorithms are better suited for different tasks. This research shows that it is possible to build digital ink libraries using the most commonly used ink analytical technique, i.e. high-performance thin layer chromatography, despite its reputation of lacking reproducibility. More importantly, it is possible to assign evidential value to ink evidence in a transparent way using a probabilistic model. It is therefore possible to move away from the traditional subjective approach, which is entirely based on experts' opinion, and which is usually not very informative. While there is room for the improvement, this report demonstrates the significant gains obtained over the traditional subjective approach for the search of ink specimens in ink databases, and the interpretation of their evidential value.
Resumo:
The paper deals with the development and application of the generic methodology for automatic processing (mapping and classification) of environmental data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve the problem of spatial data mapping (regression). The Probabilistic Neural Network (PNN) is considered as an automatic tool for spatial classifications. The automatic tuning of isotropic and anisotropic GRNN/PNN models using cross-validation procedure is presented. Results are compared with the k-Nearest-Neighbours (k-NN) interpolation algorithm using independent validation data set. Real case studies are based on decision-oriented mapping and classification of radioactively contaminated territories.
Resumo:
Estimating the time since discharge of a spent cartridge or a firearm can be useful in criminal situa-tions involving firearms. The analysis of volatile gunshot residue remaining after shooting using solid-phase microextraction (SPME) followed by gas chromatography (GC) was proposed to meet this objective. However, current interpretative models suffer from several conceptual drawbacks which render them inadequate to assess the evidential value of a given measurement. This paper aims to fill this gap by proposing a logical approach based on the assessment of likelihood ratios. A probabilistic model was thus developed and applied to a hypothetical scenario where alternative hy-potheses about the discharge time of a spent cartridge found on a crime scene were forwarded. In order to estimate the parameters required to implement this solution, a non-linear regression model was proposed and applied to real published data. The proposed approach proved to be a valuable method for interpreting aging-related data.
Resumo:
Multidisciplinary management of colorectal liver metastases allows an increase of about 20% in the resection rate of liver metastases. It includes chemotherapy, interventional radiology and surgery. In 2013, the preliminary results of the in-situ split of the liver associated with portal vein ligation (ALLPS) are promising with unprecedented mean hypertrophy up to 70% at day 9. However, the related morbidity of this procedure is about 40% and hence should be performed in the setting of study protocol only. For pancreatic cancer, the future belongs to the use of adjuvant and neo adjuvant therapies in order to increase the resection rate. Laparoscopic and robot-assisted surgery is still in evolution with significant benefits in the reduction of cost, hospital stay, and postoperative morbidity. Finally, enhanced recovery pathways (ERAS) have been validated for colorectal surgery and are currently assessed in other fields of surgery like HPB and upper GI surgery.
Resumo:
We study spatio-temporal pattern formation in a ring of N oscillators with inhibitory unidirectional pulselike interactions. The attractors of the dynamics are limit cycles where each oscillator fires once and only once. Since some of these limit cycles lead to the same pattern, we introduce the concept of pattern degeneracy to take it into account. Moreover, we give a qualitative estimation of the volume of the basin of attraction of each pattern by means of some probabilistic arguments and pattern degeneracy, and show how they are modified as we change the value of the coupling strength. In the limit of small coupling, our estimative formula gives a pefect agreement with numerical simulations.
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
In this paper we consider diffusion of a passive substance C in a temporarily and spatially inhomogeneous two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of two substances A and B, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different diffusion coefficients of C in A and B, we find that the variance of the distribution function of the said substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic ansatz and are then able to identify the interface between A and B as the main cause for this nonlinear dependence. We argue that, finally, for very large times the here temporarily dependent diffusion "constant" goes like t-1/3 to a constant asymptotic value D¿. The latter is calculated approximately by employing the effective-medium approximation and by fitting the simulation data to the said time dependence.
Resumo:
Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood. Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results. Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks.
Resumo:
Abstract In social insects, workers perform a multitude of tasks, such as foraging, nest construction, and brood rearing, without central control of how work is allocated among individuals. It has been suggested that workers choose a task by responding to stimuli gathered from the environment. Response-threshold models assume that individuals in a colony vary in the stimulus intensity (response threshold) at which they begin to perform the corresponding task. Here we highlight the limitations of these models with respect to colony performance in task allocation. First, we show with analysis and quantitative simulations that the deterministic response-threshold model constrains the workers' behavioral flexibility under some stimulus conditions. Next, we show that the probabilistic response-threshold model fails to explain precise colony responses to varying stimuli. Both of these limitations would be detrimental to colony performance when dynamic and precise task allocation is needed. To address these problems, we propose extensions of the response-threshold model by adding variables that weigh stimuli. We test the extended response-threshold model in a foraging scenario and show in simulations that it results in an efficient task allocation. Finally, we show that response-threshold models can be formulated as artificial neural networks, which consequently provide a comprehensive framework for modeling task allocation in social insects.