884 resultados para Prediction error method
Resumo:
We present a detailed analysis of the application of a multi-scale Hierarchical Reconstruction method for solving a family of ill-posed linear inverse problems. When the observations on the unknown quantity of interest and the observation operators are known, these inverse problems are concerned with the recovery of the unknown from its observations. Although the observation operators we consider are linear, they are inevitably ill-posed in various ways. We recall in this context the classical Tikhonov regularization method with a stabilizing function which targets the specific ill-posedness from the observation operators and preserves desired features of the unknown. Having studied the mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method. First introduction of the HR method can be traced back to the Hierarchical Decomposition method in Image Processing. The HR method successively extracts information from the previous hierarchical residual to the current hierarchical term at a finer hierarchical scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method provides an reasonable approximate solution to the unknown, when the observation matrix satisfies certain conditions with specific stabilizing functions. When compared to the Tikhonov regularization method on solving the same inverse problems, the HR method is shown to be able to decrease the total number of iterations, reduce the approximation error, and offer self control of the approximation distance between the hierarchical sum and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report numerical experiments supporting our claims on these advantages the HR method has over the Tikhonov regularization method.
Resumo:
Introduction Prediction of soft tissue changes following orthognathic surgery has been frequently attempted in the past decades. It has gradually progressed from the classic “cut and paste” of photographs to the computer assisted 2D surgical prediction planning; and finally, comprehensive 3D surgical planning was introduced to help surgeons and patients to decide on the magnitude and direction of surgical movements as well as the type of surgery to be considered for the correction of facial dysmorphology. A wealth of experience was gained and numerous published literature is available which has augmented the knowledge of facial soft tissue behaviour and helped to improve the ability to closely simulate facial changes following orthognathic surgery. This was particularly noticed following the introduction of the three dimensional imaging into the medical research and clinical applications. Several approaches have been considered to mathematically predict soft tissue changes in three dimensions, following orthognathic surgery. The most common are the Finite element model and Mass tensor Model. These were developed into software packages which are currently used in clinical practice. In general, these methods produce an acceptable level of prediction accuracy of soft tissue changes following orthognathic surgery. Studies, however, have shown a limited prediction accuracy at specific regions of the face, in particular the areas around the lips. Aims The aim of this project is to conduct a comprehensive assessment of hard and soft tissue changes following orthognathic surgery and introduce a new method for prediction of facial soft tissue changes. Methodology The study was carried out on the pre- and post-operative CBCT images of 100 patients who received their orthognathic surgery treatment at Glasgow dental hospital and school, Glasgow, UK. Three groups of patients were included in the analysis; patients who underwent Le Fort I maxillary advancement surgery; bilateral sagittal split mandibular advancement surgery or bimaxillary advancement surgery. A generic facial mesh was used to standardise the information obtained from individual patient’s facial image and Principal component analysis (PCA) was applied to interpolate the correlations between the skeletal surgical displacement and the resultant soft tissue changes. The identified relationship between hard tissue and soft tissue was then applied on a new set of preoperative 3D facial images and the predicted results were compared to the actual surgical changes measured from their post-operative 3D facial images. A set of validation studies was conducted. To include: • Comparison between voxel based registration and surface registration to analyse changes following orthognathic surgery. The results showed there was no statistically significant difference between the two methods. Voxel based registration, however, showed more reliability as it preserved the link between the soft tissue and skeletal structures of the face during the image registration process. Accordingly, voxel based registration was the method of choice for superimposition of the pre- and post-operative images. The result of this study was published in a refereed journal. • Direct DICOM slice landmarking; a novel technique to quantify the direction and magnitude of skeletal surgical movements. This method represents a new approach to quantify maxillary and mandibular surgical displacement in three dimensions. The technique includes measuring the distance of corresponding landmarks digitized directly on DICOM image slices in relation to three dimensional reference planes. The accuracy of the measurements was assessed against a set of “gold standard” measurements extracted from simulated model surgery. The results confirmed the accuracy of the method within 0.34mm. Therefore, the method was applied in this study. The results of this validation were published in a peer refereed journal. • The use of a generic mesh to assess soft tissue changes using stereophotogrammetry. The generic facial mesh played a major role in the soft tissue dense correspondence analysis. The conformed generic mesh represented the geometrical information of the individual’s facial mesh on which it was conformed (elastically deformed). Therefore, the accuracy of generic mesh conformation is essential to guarantee an accurate replica of the individual facial characteristics. The results showed an acceptable overall mean error of the conformation of generic mesh 1 mm. The results of this study were accepted for publication in peer refereed scientific journal. Skeletal tissue analysis was performed using the validated “Direct DICOM slices landmarking method” while soft tissue analysis was performed using Dense correspondence analysis. The analysis of soft tissue was novel and produced a comprehensive description of facial changes in response to orthognathic surgery. The results were accepted for publication in a refereed scientific Journal. The main soft tissue changes associated with Le Fort I were advancement at the midface region combined with widening of the paranasal, upper lip and nostrils. Minor changes were noticed at the tip of the nose and oral commissures. The main soft tissue changes associated with mandibular advancement surgery were advancement and downward displacement of the chin and lower lip regions, limited widening of the lower lip and slight reversion of the lower lip vermilion combined with minimal backward displacement of the upper lip were recorded. Minimal changes were observed on the oral commissures. The main soft tissue changes associated with bimaxillary advancement surgery were generalized advancement of the middle and lower thirds of the face combined with widening of the paranasal, upper lip and nostrils regions. In Le Fort I cases, the correlation between the changes of the facial soft tissue and the skeletal surgical movements was assessed using PCA. A statistical method known as ’Leave one out cross validation’ was applied on the 30 cases which had Le Fort I osteotomy surgical procedure to effectively utilize the data for the prediction algorithm. The prediction accuracy of soft tissue changes showed a mean error ranging between (0.0006mm±0.582) at the nose region to (-0.0316mm±2.1996) at the various facial regions.
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials. © 2015, The Author(s).
Resumo:
We propose a pre-processing mesh re-distribution algorithm based upon harmonic maps employed in conjunction with discontinuous Galerkin approximations of advection-diffusion-reaction problems. Extensive two-dimensional numerical experiments with different choices of monitor functions, including monitor functions derived from goal-oriented a posteriori error indicators are presented. The examples presented clearly demonstrate the capabilities and the benefits of combining our pre-processing mesh movement algorithm with both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.
Resumo:
Sea- level variations have a significant impact on coastal areas. Prediction of sea level variations expected from the pre most critical information needs associated with the sea environment. For this, various methods exist. In this study, on the northern coast of the Persian Gulf have been studied relation to the effectiveness of parameters such as pressure, temperature and wind speed on sea leve and associated with global parameters such as the North Atlantic Oscillation index and NAO index and present statistic models for prediction of sea level. In the next step by using artificial neural network predict sea level for first in this region. Then compared results of the models. Prediction using statistical models estimated in terms correlation coefficient R = 0.84 and root mean square error (RMS) 21.9 cm for the Bushehr station, and R = 0.85 and root mean square error (RMS) 48.4 cm for Rajai station, While neural network used to have 4 layers and each middle layer six neurons is best for prediction and produces the results reliably in terms of correlation coefficient with R = 0.90126 and the root mean square error (RMS) 13.7 cm for the Bushehr station, and R = 0.93916 and the root mean square error (RMS) 22.6 cm for Rajai station. Therefore, the proposed methodology could be successfully used in the study area.
Resumo:
The anticipated growth of air traffic worldwide requires enhanced Air Traffic Management (ATM) technologies and procedures to increase the system capacity, efficiency, and resilience, while reducing environmental impact and maintaining operational safety. To deal with these challenges, new automation and information exchange capabilities are being developed through different modernisation initiatives toward a new global operational concept called Trajectory Based Operations (TBO), in which aircraft trajectory information becomes the cornerstone of advanced ATM applications. This transformation will lead to higher levels of system complexity requiring enhanced Decision Support Tools (DST) to aid humans in the decision making processes. These will rely on accurate predicted aircraft trajectories, provided by advanced Trajectory Predictors (TP). The trajectory prediction process is subject to stochastic effects that introduce uncertainty into the predictions. Regardless of the assumptions that define the aircraft motion model underpinning the TP, deviations between predicted and actual trajectories are unavoidable. This thesis proposes an innovative method to characterise the uncertainty associated with a trajectory prediction based on the mathematical theory of Polynomial Chaos Expansions (PCE). Assuming univariate PCEs of the trajectory prediction inputs, the method describes how to generate multivariate PCEs of the prediction outputs that quantify their associated uncertainty. Arbitrary PCE (aPCE) was chosen because it allows a higher degree of flexibility to model input uncertainty. The obtained polynomial description can be used in subsequent prediction sensitivity analyses thanks to the relationship between polynomial coefficients and Sobol indices. The Sobol indices enable ranking the input parameters according to their influence on trajectory prediction uncertainty. The applicability of the aPCE-based uncertainty quantification detailed herein is analysed through a study case. This study case represents a typical aircraft trajectory prediction problem in ATM, in which uncertain parameters regarding aircraft performance, aircraft intent description, weather forecast, and initial conditions are considered simultaneously. Numerical results are compared to those obtained from a Monte Carlo simulation, demonstrating the advantages of the proposed method. The thesis includes two examples of DSTs (Demand and Capacity Balancing tool, and Arrival Manager) to illustrate the potential benefits of exploiting the proposed uncertainty quantification method.
Resumo:
We introduce and analyze a discontinuous Galerkin method for the numerical discretization of a stationary incompressible magnetohydrodynamics model problem. The fluid unknowns are discretized with inf-sup stable discontinuous P^3_{k}-P_{k-1} elements whereas the magnetic part of the equations is approximated by discontinuous P^3_{k}-P_{k+1} elements. We carry out a complete a-priori error analysis and prove that the energy norm error is convergent of order O(h^k) in the mesh size h. We also show that the method is able to correctly capture and resolve the strongest magnetic singularities in non-convex polyhedral domains. These results are verified in a series of numerical experiments.
Resumo:
We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre-processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection-diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed discretization error by clustering the nodes in the computational mesh where the analytical solution undergoes rapid variation.
Resumo:
This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator.
Resumo:
This lecture course covers the theory of so-called duality-based a posteriori error estimation of DG finite element methods. In particular, we formulate consistent and adjoint consistent DG methods for the numerical approximation of both the compressible Euler and Navier-Stokes equations; in the latter case, the viscous terms are discretized based on employing an interior penalty method. By exploiting a duality argument, adjoint-based a posteriori error indicators will be established. Moreover, application of these computable bounds within automatic adaptive finite element algorithms will be developed. Here, a variety of isotropic and anisotropic adaptive strategies, as well as $hp$-mesh refinement will be investigated.
Resumo:
Many geological formations consist of crystalline rocks that have very low matrix permeability but allow flow through an interconnected network of fractures. Understanding the flow of groundwater through such rocks is important in considering disposal of radioactive waste in underground repositories. A specific area of interest is the conditioning of fracture transmissivities on measured values of pressure in these formations. This is the process where the values of fracture transmissivities in a model are adjusted to obtain a good fit of the calculated pressures to measured pressure values. While there are existing methods to condition transmissivity fields on transmissivity, pressure and flow measurements for a continuous porous medium there is little literature on conditioning fracture networks. Conditioning fracture transmissivities on pressure or flow values is a complex problem because the measurements are not linearly related to the fracture transmissivities and they are also dependent on all the fracture transmissivities in the network. We present a new method for conditioning fracture transmissivities on measured pressure values based on the calculation of certain basis vectors; each basis vector represents the change to the log transmissivity of the fractures in the network that results in a unit increase in the pressure at one measurement point whilst keeping the pressure at the remaining measurement points constant. The fracture transmissivities are updated by adding a linear combination of basis vectors and coefficients, where the coefficients are obtained by minimizing an error function. A mathematical summary of the method is given. This algorithm is implemented in the existing finite element code ConnectFlow developed and marketed by Serco Technical Services, which models groundwater flow in a fracture network. Results of the conditioning are shown for a number of simple test problems as well as for a realistic large scale test case.
Resumo:
In this paper we show how to accurately perform a quasi-a priori estimation of the truncation error of steady-state solutions computed by a discontinuous Galerkin spectral element method. We estimate the spatial truncation error using the ?-estimation procedure. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, we use non time-converged solutions on one grid with different polynomial orders. The quasi-a priori approach estimates the error while the residual of the time-iterative method is not negligible. Furthermore, the method permits one to decouple the surface and the volume contributions of the truncation error, and provides information about the anisotropy of the solution as well as its rate of convergence in polynomial order. First, we focus on the analysis of one dimensional scalar conservation laws to examine the accuracy of the estimate. Then, we extend the analysis to two dimensional problems. We demonstrate that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.
Resumo:
The development of oil wells drilling requires additional cares mainly if the drilling is in offshore ultra deep water with low overburden pressure gradients which cause low fracture gradients and, consequently, difficult the well drilling by the reduction of the operational window. To minimize, in the well planning phases, the difficulties faced by the drilling in those sceneries, indirect models are used to estimate fracture gradient that foresees approximate values for leakoff tests. These models generate curves of geopressures that allow detailed analysis of the pressure behavior for the whole well. Most of these models are based on the Terzaghi equation, just differentiating in the determination of the values of rock tension coefficient. This work proposes an alternative method for prediction of fracture pressure gradient based on a geometric correlation that relates the pressure gradients proportionally for a given depth and extrapolates it for the whole well depth, meaning that theses parameters vary in a fixed proportion. The model is based on the application of analytical proportion segments corresponding to the differential pressure related to the rock tension. The study shows that the proposed analytical proportion segments reaches values of fracture gradient with good agreement with those available for leakoff tests in the field area. The obtained results were compared with twelve different indirect models for fracture pressure gradient prediction based on the compacting effect. For this, a software was developed using Matlab language. The comparison was also made varying the water depth from zero (onshore wellbores) to 1500 meters. The leakoff tests are also used to compare the different methods including the one proposed in this work. The presented work gives good results for error analysis compared to other methods and, due to its simplicity, justify its possible application
Resumo:
The main goal of the research presented in this work is to provide some important insights about computational modeling of open-shell species. Such projects are: the investigation of the size-extensivity error in Equation-of-Motion Coupled Cluster methods, the analysis of the Long-Range corrected scheme in predicting UV-Vis spectra of Cu(II) complexes with the 4-imidazole acetate and its ethylated derivative, and the exploration of the importance of choosing a proper basis set for the description of systems such as the lithium monoxide anion. The most significant findings of this research are: (i) The contribution of the left operator to the size-extensivity error of the CR-EOMCC(2,3) approach, (ii) The cause of d-d shifts when varying the range-separation parameter and the amount of the exact exchange arising from the imbalanced treatment of localized vs. delocalized orbitals via the "tuned" CAM-B3LYP* functional, (iii) The proper acidity trend of the first-row hydrides and their lithiated analogs that may be reversed if the basis sets are not correctly selected.
Resumo:
Sporulation is a process in which some bacteria divide asymmetrically to form tough protective endospores, which help them to survive in a hazardous environment for a quite long time. The factors which can trigger this process are diverse. Heat, radiation, chemicals and lacking of nutrition can all lead to the formation of endospores. This phenomenon will lead to low productivity during industrial production. However, the sporulation mechanism in a spore-forming bacterium, Clostridium theromcellum, is still unclear. Therefore, if a regulation network of sporulation can be built, we may figure out ways to inhibit this process. In this study, a computational method is applied to predict the sporulation network in Clostridium theromcellum. A working sporulation network model with 40 new predicted genes and 4 function groups is built by using a network construction program, CINPER. 5 sets of microarray expression data in Clostridium theromcellum under different conditions have been collected. The analysis shows the predicted result is reasonable.