854 resultados para Precise positioning
Resumo:
Purpose: Electronic Portal Imaging Devices (EPIDs) are available with most linear accelerators (Amonuk, 2002), the current technology being amorphous silicon flat panel imagers. EPIDs are currently used routinely in patient positioning before radiotherapy treatments. There has been an increasing interest in using EPID technology tor dosimetric verification of radiotherapy treatments (van Elmpt, 2008). A straightforward technique involves the EPID panel being used to measure the fluence exiting the patient during a treatment which is then compared to a prediction of the fluence based on the treatment plan. However, there are a number of significant limitations which exist in this Method: Resulting in a limited proliferation ot this technique in a clinical environment. In this paper, we aim to present a technique of simulating IMRT fields using Monte Carlo to predict the dose in an EPID which can then be compared to the measured dose in the EPID. Materials: Measurements were made using an iView GT flat panel a-SI EPfD mounted on an Elekta Synergy linear accelerator. The images from the EPID were acquired using the XIS software (Heimann Imaging Systems). Monte Carlo simulations were performed using the BEAMnrc and DOSXVZnrc user codes. The IMRT fieids to be delivered were taken from the treatment planning system in DICOMRT format and converted into BEAMnrc and DOSXYZnrc input files using an in-house application (Crowe, 2009). Additionally. all image processing and analysis was performed using another in-house application written using the Interactive Data Language (IDL) (In Visual Information Systems). Comparison between the measured and Monte Carlo EPID images was performed using a gamma analysis (Low, 1998) incorporating dose and distance to agreement criteria. Results: The fluence maps recorded by the EPID were found to provide good agreement between measured and simulated data. Figure 1 shows an example of measured and simulated IMRT dose images and profiles in the x and y directions. "A technique for the quantitative evaluation of dose distributions", Med Phys, 25(5) May 1998 S. Crowe, 1. Kairn, A. Fielding, "The Development of a Monte Carlo system to verify Radiotherapy treatment dose calculations", Radiotherapy & Oncology, Volume 92, Supplement 1, August 2009, Pages S71-S71.
Resumo:
Introduction: The use of amorphous-silicon electronic portal imaging devices (a-Si EPIDs) for dosimetry is complicated by the effects of scattered radiation. In photon radiotherapy, primary signal at the detector can be accompanied by photons scattered from linear accelerator components, detector materials, intervening air, treatment room surfaces (floor, walls, etc) and from the patient/phantom being irradiated. Consequently, EPID measurements which presume to take scatter into account are highly sensitive to the identification of these contributions. One example of this susceptibility is the process of calibrating an EPID for use as a gauge of (radiological) thickness, where specific allowance must be made for the effect of phantom-scatter on the intensity of radiation measured through different thicknesses of phantom. This is usually done via a theoretical calculation which assumes that phantom scatter is linearly related to thickness and field-size. We have, however, undertaken a more detailed study of the scattering effects of fields of different dimensions when applied to phantoms of various thicknesses in order to derive scattered-primary ratios (SPRs) directly from simulation results. This allows us to make a more-accurate calibration of the EPID, and to qualify the appositeness of the theoretical SPR calculations. Methods: This study uses a full MC model of the entire linac-phantom-detector system simulated using EGSnrc/BEAMnrc codes. The Elekta linac and EPID are modelled according to specifications from the manufacturer and the intervening phantoms are modelled as rectilinear blocks of water or plastic, with their densities set to a range of physically realistic and unrealistic values. Transmissions through these various phantoms are calculated using the dose detected in the model EPID and used in an evaluation of the field-size-dependence of SPR, in different media, applying a method suggested for experimental systems by Swindell and Evans [1]. These results are compared firstly with SPRs calculated using the theoretical, linear relationship between SPR and irradiated volume, and secondly with SPRs evaluated from our own experimental data. An alternate evaluation of the SPR in each simulated system is also made by modifying the BEAMnrc user code READPHSP, to identify and count those particles in a given plane of the system that have undergone a scattering event. In addition to these simulations, which are designed to closely replicate the experimental setup, we also used MC models to examine the effects of varying the setup in experimentally challenging ways (changing the size of the air gap between the phantom and the EPID, changing the longitudinal position of the EPID itself). Experimental measurements used in this study were made using an Elekta Precise linear accelerator, operating at 6MV, with an Elekta iView GT a-Si EPID. Results and Discussion: 1. Comparison with theory: With the Elekta iView EPID fixed at 160 cm from the photon source, the phantoms, when positioned isocentrically, are located 41 to 55 cm from the surface of the panel. At this geometry, a close but imperfect agreement (differing by up to 5%) can be identified between the results of the simulations and the theoretical calculations. However, this agreement can be totally disrupted by shifting the phantom out of the isocentric position. Evidently, the allowance made for source-phantom-detector geometry by the theoretical expression for SPR is inadequate to describe the effect that phantom proximity can have on measurements made using an (infamously low-energy sensitive) a-Si EPID. 2. Comparison with experiment: For various square field sizes and across the range of phantom thicknesses, there is good agreement between simulation data and experimental measurements of the transmissions and the derived values of the primary intensities. However, the values of SPR obtained through these simulations and measurements seem to be much more sensitive to slight differences between the simulated and real systems, leading to difficulties in producing a simulated system which adequately replicates the experimental data. (For instance, small changes to simulated phantom density make large differences to resulting SPR.) 3. Comparison with direct calculation: By developing a method for directly counting the number scattered particles reaching the detector after passing through the various isocentric phantom thicknesses, we show that the experimental method discussed above is providing a good measure of the actual degree of scattering produced by the phantom. This calculation also permits the analysis of the scattering sources/sinks within the linac and EPID, as well as the phantom and intervening air. Conclusions: This work challenges the assumption that scatter to and within an EPID can be accounted for using a simple, linear model. Simulations discussed here are intended to contribute to a fuller understanding of the contribution of scattered radiation to the EPID images that are used in dosimetry calculations. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital, Brisbane, Australia. The authors are also grateful to Elekta for the provision of manufacturing specifications which permitted the detailed simulation of their linear accelerators and amorphous-silicon electronic portal imaging devices. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.
Resumo:
Introduction: Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo (MC) methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the ‘gold standard’ for predicting dose deposition in the patient [1]. This project has three main aims: 1. To develop tools that enable the transfer of treatment plan information from the treatment planning system (TPS) to a MC dose calculation engine. 2. To develop tools for comparing the 3D dose distributions calculated by the TPS and the MC dose engine. 3. To investigate the radiobiological significance of any errors between the TPS patient dose distribution and the MC dose distribution in terms of Tumour Control Probability (TCP) and Normal Tissue Complication Probabilities (NTCP). The work presented here addresses the first two aims. Methods: (1a) Plan Importing: A database of commissioned accelerator models (Elekta Precise and Varian 2100CD) has been developed for treatment simulations in the MC system (EGSnrc/BEAMnrc). Beam descriptions can be exported from the TPS using the widespread DICOM framework, and the resultant files are parsed with the assistance of a software library (PixelMed Java DICOM Toolkit). The information in these files (such as the monitor units, the jaw positions and gantry orientation) is used to construct a plan-specific accelerator model which allows an accurate simulation of the patient treatment field. (1b) Dose Simulation: The calculation of a dose distribution requires patient CT images which are prepared for the MC simulation using a tool (CTCREATE) packaged with the system. Beam simulation results are converted to absolute dose per- MU using calibration factors recorded during the commissioning process and treatment simulation. These distributions are combined according to the MU meter settings stored in the exported plan to produce an accurate description of the prescribed dose to the patient. (2) Dose Comparison: TPS dose calculations can be obtained using either a DICOM export or by direct retrieval of binary dose files from the file system. Dose difference, gamma evaluation and normalised dose difference algorithms [2] were employed for the comparison of the TPS dose distribution and the MC dose distribution. These implementations are spatial resolution independent and able to interpolate for comparisons. Results and Discussion: The tools successfully produced Monte Carlo input files for a variety of plans exported from the Eclipse (Varian Medical Systems) and Pinnacle (Philips Medical Systems) planning systems: ranging in complexity from a single uniform square field to a five-field step and shoot IMRT treatment. The simulation of collimated beams has been verified geometrically, and validation of dose distributions in a simple body phantom (QUASAR) will follow. The developed dose comparison algorithms have also been tested with controlled dose distribution changes. Conclusion: The capability of the developed code to independently process treatment plans has been demonstrated. A number of limitations exist: only static fields are currently supported (dynamic wedges and dynamic IMRT will require further development), and the process has not been tested for planning systems other than Eclipse and Pinnacle. The tools will be used to independently assess the accuracy of the current treatment planning system dose calculation algorithms for complex treatment deliveries such as IMRT in treatment sites where patient inhomogeneities are expected to be significant. Acknowledgements: Computational resources and services used in this work were provided by the HPC and Research Support Group, Queensland University of Technology, Brisbane, Australia. Pinnacle dose parsing made possible with the help of Paul Reich, North Coast Cancer Institute, North Coast, New South Wales.
Resumo:
Accuracy of dose delivery in external beam radiotherapy is usually verified with electronic portal imaging (EPI) in which the treatment beam is used to check the positioning of the patient. However the resulting megavoltage x-ray images suffer from poor quality. The image quality can be improved by developing a special operating mode in the linear accelerator. The existing treatment beam is modified such that it produces enough low-energy photons for imaging. In this work the problem of optimizing the beam/detector combination to achieve optimal electronic portal image quality is addressed. The linac used for this study was modified to produce two experimental photon beams. These beams, named Al6 and Al10, were non-flat and were produced by 4MeV electrons hitting aluminum targets, 6 and 10mm thick respectively. The images produced by a conventional EPI system (6MV treatment beam and camera-based EPID with a Cu plate & Gd2O2S screen ) were compared with the images produced by the experimental beams and various screens with the same camera). The contrast of 0.8cm bone equivalent material in 5 cm water increased from 1.5% for the conventional system to 11% for the combination of Al6 beam with a 200mg/cm2 Gd2O2S screen. The signal-to-noise ratio calculated for 1cGy flood field images increased by about a factor of two for the same EPI systems. The spatial resolution of the two imaging systems was comparable. This work demonstrates that significant improvements in portal image contrast can be obtained by simultaneous optimization of the linac spectrum and EPI detector.
Resumo:
We have taken a new method of calibrating portal images of IMRT beams and used this to measure patient set-up accuracy and delivery errors, such as leaf errors and segment intensity errors during treatment. A calibration technique was used to remove the intensity modulations from the images leaving equivalent open field images that show patient anatomy that can be used for verification of the patient position. The images of the treatment beam can also be used to verify the delivery of the beam in terms of multileaf collimator leaf position and dosimetric errors. A series of controlled experiments delivering an IMRT anterior beam to the head and neck of a humanoid phantom were undertaken. A 2mm translation in the position of the phantom could be detected. With intentional introduction of delivery errors into the beam this method allowed us to detect leaf positioning errors of 2mm and variation in monitor units of 1%. The method was then applied to the case of a patient who received IMRT treatment to the larynx and cervical nodes. The anterior IMRT beam was imaged during four fractions and the images calibrated and investigated for the characteristic signs of patient position error and delivery error that were shown in the control experiments. No significant errors were seen. The method of imaging the IMRT beam and calibrating the images to remove the intensity modulations can be a useful tool in verifying both the patient position and the delivery of the beam.
Resumo:
This thesis highlights the limitations of the existing car following models to emulate driver behaviour for safety study purposes. It also compares the capabilities of the mainstream car following models emulating driver behaviour precise parameters such as headways and Time to Collisions. The comparison evaluates the robustness of each car following model for safety metric reproductions. A new car following model, based on the personal space concept and fish school model is proposed to simulate more precise traffic metrics. This new model is capable of reflecting changes in the headway distribution after imposing the speed limit form VSL systems. This research facilitates assessing Intelligent Transportation Systems on motorways, using microscopic simulation.
Resumo:
Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A refined plastic hinge method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in a companion paper. The method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established in this paper by comparison with a comprehensive range of analytical benchmark frame solutions. The refined plastic hinge method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.
Resumo:
Early education in Australia encompasses both early education and care(ECEC) and the early years of school. Educational approaches to cultural and linguistic diversity have varied not only by sector but also by jurisdiction based on distinct curriculum frameworks and policies. In Australian early education, provision for cultural and linguistic diversity has been framed largely by multicultural discourse, as defined by a complex history of progressive, yet often superficial reforms. Current initiatives serve to change this trajectory and the positioning of stakeholders. The incorporation of intercultural rather than multicultural approaches offers new possibilities for early education and directs attention to real challenges for ECEC. They re-position Aboriginal and Torres Strait Islanders as the First Australians, and direct attention to both Australia’s social, cultural and linguistic diversity and to the role of early childhood educators in enacting more inclusive pedagogies. Challenges yet to be addressed include the cultural understanding of Australian early childhood educators, particularly those who identify as Anglo- Australian, deeper policy enactment in pedagogic practice and negotiation with diverse families and communities. This paper will address the historical and current policy contexts of intercultural early education in Australia, the development of intercultural initiatives, and emerging issues as national policies are introduced. The discussion draws on responses to intercultural early education in New Zealand and Canada to consider approaches to intercultural priorities in Australia. The paper will attend predominantly to Aboriginal and Torres Strait Islander perspectives as a core element of change in Australian early childhood policy, focusing on ECEC.
Resumo:
The composition of a series of hydroxycarbonate precursors to copper/zinc oxide methanol synthesis catalysts prepared under conditions reported as optimum for catalytic activity has been studied. Techniques employed included thermogravimetry (TG), temperature-programmed decomposition (TPD), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman and FTIR spectroscopies. Evidence was obtained for various structural phases including hydrozincite, copper hydrozincite, aurichalcite, zincian malachite and malachite (the concentrations of which depended upon the exact Cu/Zn ratio used). Significantly, previously reported phases such as gerhardite and rosasite were not identified when catalysts were synthesized at optimum solution pH and temperature values, and after appropriate aging periods. Calcination of the hydroxycarbonate precursors resulted in the formation of catalysts containing an intimate mixture of copper and zinc oxides. Temperature-programmed reduction (TPR) revealed that a number of discrete copper oxide species were present in the catalyst, the precise concentrations of which were determined to be related to the structure of the catalyst precursor. Copper hydrozincite decomposed to give zinc oxide particles decorated by highly dispersed, small copper oxide species. Aurichalcite appeared to result ultimately in the most intimately mixed catalyst structure whereas zincian malachite decomposed to produce larger copper oxide and zinc oxide grains. The reason for the stabilization of small copper oxide and zinc oxide clusters by aurichalcite was investigated by using carefully selected calcination temperatures. It was concluded that the unique formation of an 'anion-modified' oxide resulting from the initial decomposition stage of aurichalcite was responsible for the 'binding' of copper species to zinc moieties.
Resumo:
Digital media is often criticised for being intangible, transient and ephemeral. These characteristics limit the provision of long-lasting social experiences, as it is through the use of all our senses that we attach meaning to space, creating a sense of place. This paper presents a comparative study of the affordances of two design interventions, one tangible paper-based, called Print + Talk = Love (PTL), the other digital screen-based, called Discussions in Space (DIS). The emphasis is on a) how tangible media, such as paper, provides different and meaningful collective experiences, and b) how it can stand on its own as an interactive design intervention and as a comprehensive data-gathering tool in urban public places. By positioning PTL and DIS within the context of urban public places and testing their abilities to engage participants, we examine their particular situated engagement abilities through a mixed method approach. As a result, the digital aspects of DIS, e.g., using Twitter, extend the situated experience beyond the actual location of the intervention. Moreover, informing a hybrid approach, we also found that the physical aspects of PTL and its tangible presence, kept the user experience focused on the actual place and event surrounding the intervention.
Resumo:
Numerous studies have reported associations between IGF-I and other extra cellular matrix (ECM) proteins, including fibronectin (FN), integrins, IGF-binding proteins (IGFBPs) and through IGFBPs, with vitronectin (VN). Nevertheless, the precise nature and mechanisms of these interactions are still being characterised. In this paper, we discuss transglutaminases (TGases) as a constituent of the ECM and provide evidence for the first time that IGF-I is a lysine (K)-donor substrate to TGases. When IGF-I was incubated with an alpha-2 plasmin inhibitor-derived Q peptide in the presence of tissue transglutaminase (TG2), an IGF-I:Q peptide cross-linked species was detected using Western immunoblotting and confirmed by mass spectrometry. Similar findings were observed in the presence of Factor XIIIa (FXIIIa) TGase. To identify the precise location of this K-donor TGase site/s on IGF-I, all the three IGF-I K-sites, individually and collectively (K27, K65 and K68), were substituted to arginine (R) using site-directed mutagenesis. Incubation of these K→R IGF-I analogues with Q peptide in the presence of TG2 or FXIIIa resulted in the absence of cross-linking in IGF-I analogues bearing arginine substitution at site 68. This established that K68 within the IGF-I D-domain was the principal K-donor site to TGases. We further annotated the functional significance of these K→R IGF-I analogues on IGF-I mediated actions. IGF-I analogues with K→R substitution within the D-domain at K65 and K68 hindered migration of MCF-7 breast carcinoma cells and correspondingly reduced PI3-K/AKT activation. Therefore, this study also provides first insights into a possible functional role of the previously uncharacterised IGF-I D-domain.
Resumo:
Chlamydia trachomatis is a bacterial pathogen responsible for one of the most prevalent sexually transmitted infections worldwide. Its unique development cycle has limited our understanding of its pathogenic mechanisms. However, CtHtrA has recently been identified as a potential C. trachomatis virulence factor. CtHtrA is a tightly regulated quality control protein with a monomeric structural unit comprised of a chymotrypsin-like protease domain and two PDZ domains. Activation of proteolytic activity relies on the C-terminus of the substrate allosterically binding to the PDZ1 domain, which triggers subsequent conformational change and oligomerization of the protein into 24-mers enabling proteolysis. This activation is mediated by a cascade of precise structural arrangements, but the specific CtHtrA residues and structural elements required to facilitate activation are unknown. Using in vitro analysis guided by homology modeling, we show that the mutation of residues Arg362 and Arg224, predicted to disrupt the interaction between the CtHtrA PDZ1 domain and loop L3, and between loop L3 and loop LD, respectively, are critical for the activation of proteolytic activity. We also demonstrate that mutation to residues Arg299 and Lys160, predicted to disrupt PDZ1 domain interactions with protease loop LC and strand β5, are also able to influence proteolysis, implying their involvement in the CtHtrA mechanism of activation. This is the first investigation of protease loop LC and strand β5 with respect to their potential interactions with the PDZ1 domain. Given their high level of conservation in bacterial HtrA, these structural elements may be equally significant in the activation mechanism of DegP and other HtrA family members.
Resumo:
Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.
Resumo:
This chapter briefly introduces the concepts and modeling of gas/isotope separation by two dimensional carbon frameworks, i.e. porous graphene and carbon nanomeshes, on the basis of reviewing recent literatures. The small size of evenly distributed pores on these carbon frameworks make them ideal not only for the separation of small gas molecules but also for isotope separation by utilizing the different zero point energies induced by confinement of the pores. The related simulations were treated by transition state theory, an affordable yet precise method that could be adopted in combination with different levels of theory. Such method could be employed to evaluate the performance, as well as to aid the design, of other 2D carbon frameworks toward the goal of gas/isotope separation in the future.
Resumo:
International Film Festivals act as important sites for the exhibition of contemporary world cinema. Film festivals represent an increasingly transnational film culture, where audiences, filmmakers, distributors, press, critics and academics come together from all over the world to discover new films, network with one another and debate about the past, present and future of cinema. This research project investigates the role that international film festivals play within the wider international film industry, with a specific focus on emerging women filmmakers. It therefore explores the arena of contemporary women.s cinema at its intersection with the international film festival industry. The significance and original contribution of the research is its intervention in the growing field of film festival studies through a specific investigation of how international film festivals support emerging women filmmakers. The positioning of the research at the intersection of feminist film theory and festival research within the broader context of transnational cinema allows the examination of each festival, the attending filmmakers and their films to be addressed within a more refined and nuanced lens. A core method for the thesis is the close textual analysis of particular emerging women filmmakers. films which are screened at the respective festivals. The research also utilises the qualitative research strategies of the case study and the interview to ¡°seek to understand the context or setting of the participants through visiting this context and gathering information personally¡± (Creswell 2003, 9). The textual analysis is used in dialogue with the interviews and the participant observational data gathering to provide a related context for understanding these films and their cultural meanings, both personally for the filmmaker and transnationally across the festival circuit. The focus of the case studies is the Brisbane International Film Festival, the International Film Festival Rotterdam and the Toronto International Film Festival. These three festivals were chosen for their distinct geographical locations in the Asia Pacific, Europe and North America, as well as for their varying size and influence on the international film festival circuit. Specifically, I investigate the reasons behind why the organisers of a particular festival have chosen a certain woman.s film, how it is then packaged or displayed within the programme, and how all of this impacts on the filmmaker herself. The focus of my research is to investigate film festivals and their .real-life. applications and benefits for the filmmakers being supported, both through the exhibition of their films and through their attendance as festival guests. The research finds that the current generation of emerging women filmmakers has varying levels of experience and success at negotiating the international film festival circuit. Each of the three festivals examined include and promote the films of emerging women filmmakers through a range of strategies, such as specific programming strands dedicated to showcasing emerging talent, financial support through festival funds, providing visibility within the programme, exposure to international audiences and networking opportunities with industry professionals and other filmmakers. Furthermore, the films produced by the emerging women filmmakers revealed a strong focus on women.s perspectives and experiences, which were explored through the interweaving of particular aesthetic and cinematographic conventions.