905 resultados para Population balance model (PBM)
Resumo:
We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI) and changes in weight and waist circumference. We also investigated effect modification by sex and dietary intake. Data of 6,287 individuals participating in the European prospective investigation into cancer and nutrition were included in the analyses. Data on weight and waist circumference were followed up for 6.9 ± 2.5 years. Association of 69 tagSNPs with baseline BMI and annual changes in weight as well as waist circumference were investigated using linear regression analysis. Interactions with sex, GI and intake of carbohydrates, fat as well as saturated, monounsaturated and polyunsaturated fatty acids were examined by including multiplicative SNP-covariate terms into the regression model. Neither baseline BMI nor annual weight or waist circumference changes were significantly associated with variation in the selected genes in the entire study population after correction for multiple testing. One SNP (rs1164) in LPIN2 appeared to be significantly interacting with sex (p = 0.0003) and was associated with greater annual weight gain in men (56.8 ± 23.7 g/year per allele, p = 0.02) than in women (-25.5 ± 19.8 g/year per allele, p = 0.2). With respect to gene-nutrient interaction, we could not detect any significant interactions when accounting for multiple testing. Therefore, out of our six candidate genes, LPIN2 may be considered as a candidate for further studies.
Resumo:
Runoff fields over northern Africa (10–25°N, 20°W–30°E) derived from 17 atmospheric general circulation models driven by identical 6 ka BP orbital forcing, sea surface temperatures, and CO2 concentration have been analyzed using a hydrological routing scheme (HYDRA) to simulate changes in lake area. The AGCM-simulated runoff produced six-fold differences in simulated lake area between models, although even the largest simulated changes considerably underestimate the observed changes in lake area during the mid-Holocene. The inter-model differences in simulated lake area are largely due to differences in simulated runoff (the squared correlation coefficient, R2, is 0.84). Most of these differences can be attributed to differences in the simulated precipitation (R2=0.83). The higher correlation between runoff and simulated lake area (R2=0.92) implies that simulated differences in evaporation have a contributory effect. When runoff is calculated using an offline land-surface scheme (BIOME3), the correlation between runoff and simulated lake area is (R2=0.94). Finally, the spatial distribution of simulated precipitation can exert an important control on the overall response.
Resumo:
Mineral dust aerosols in the atmosphere have the potential to affect the global climate by influencing the radiative balance of the atmosphere and the supply of micronutrients to the ocean. Ice and marine sediment cores indicate that dust deposition from the atmosphere was at some locations 2–20 times greater during glacial periods, raising the possibility that mineral aerosols might have contributed to climate change on glacial-interglacial time scales. To address this question, we have used linked terrestrial biosphere, dust source, and atmospheric transport models to simulate the dust cycle in the atmosphere for current and last glacial maximum (LGM) climates. We obtain a 2.5-fold higher dust loading in the entire atmosphere and a twenty-fold higher loading in high latitudes, in LGM relative to present. Comparisons to a compilation of atmospheric dust deposition flux estimates for LGM and present in marine sediment and ice cores show that the simulated flux ratios are broadly in agreement with observations; differences suggest where further improvements in the simple dust model could be made. The simulated increase in high-latitude dustiness depends on the expansion of unvegetated areas, especially in the high latitudes and in central Asia, caused by a combination of increased aridity and low atmospheric [CO2]. The existence of these dust source areas at the LGM is supported by pollen data and loess distribution in the northern continents. These results point to a role for vegetation feedbacks, including climate effects and physiological effects of low [CO2], in modulating the atmospheric distribution of dust.
Resumo:
Variations in lake area and depth reflect climatically induced changes in the water balance of overflowing as well as closed lakes. A new global data base of lake status has been assembled, and is used to compare two simulations for 6 ka (6000 yr ago) made with successive R15 versions of the NCAR Community Climate Model (CCM). Simulated water balance was expressed as anomalies of annual precipitation minus evaporation (P-E); observed water balance as anomalies of lake status. Comparisons were made visually, by comparing regional averages, and by a statistic that compares the signs of simulated P-E anomalies (smoothly interpolated to the lake sites) with the status anomalies. Both CCM0 and CCM1 showed enhanced Northern-Hemisphere monsoons at 6 ka. Both underestimated the effect, but CCM1 fitted the spatial patterns better. In the northern mid- and high-latitudes the two versions differed more, and fitted the data less satisfactorily. CCM1 performed better than CCM0 in North America and central Eurasia, but not in Europe. Both models (especially CCM0) simulated excessive aridity in interior Eurasia. The models were systematically wrong in the southern mid-latitudes. Problems may have been caused by inadequate treatment of changes in sea-surface conditions in both models. Palaeolake status data will continue to provide a benchmark for the evaluation of modelling improvements.
Resumo:
The recommendation to reduce saturated fatty acid (SFA) consumption to ≤10% of total energy (%TE) is a key public health target aimed at lowering cardiovascular disease (CVD) risk. Replacement of SFA with unsaturated fats may provide greater benefit than replacement with carbohydrates, yet the optimal type of fat is unclear. The aim was to develop a flexible food-exchange model to investigate the effects of substituting SFAs with monounsaturated fatty acids (MUFAs) or n-6 (ω-6) polyunsaturated fatty acids (PUFAs) on CVD risk factors. In this parallel study, UK adults aged 21-60 y with moderate CVD risk (50% greater than the population mean) were identified using a risk assessment tool (n = 195; 56% females). Three 16-wk isoenergetic diets of specific fatty acid (FA) composition (%TE SFA:%TE MUFA:%TE n-6 PUFA) were designed using spreads, oils, dairy products, and snacks as follows: 1) SFA-rich diet (17:11:4; n = 65); 2) MUFA-rich diet (9:19:4; n = 64); and 3) n-6 PUFA-rich diet (9:13:10; n = 66). Each diet provided 36%TE total fat. Dietary targets were broadly met for all intervention groups, reaching 17.6 ± 0.4%TE SFA, 18.5 ± 0.3%TE MUFA, and 10.4 ± 0.3%TE n-6 PUFA in the respective diets, with significant overall diet effects for the changes in SFA, MUFA, and n-6 PUFA between groups (P < 0.001). There were no differences in the changes of total fat, protein, carbohydrate, and alcohol intake or anthropometric measures between groups. Plasma phospholipid FA composition showed changes from baseline in the proportions of total SFA, MUFA, and n-6 PUFA for each diet group, with significant overall diet effects for total SFA and MUFA between groups (P < 0.001). In conclusion, successful implementation of the food-exchange model broadly achieved the dietary target intakes for the exchange of SFA with MUFA or n-6 PUFA with minimal disruption to the overall diet in a free-living population. This trial was registered at clinicaltrials.gov as NCT01478958.
Resumo:
This paper examines the determinacy implications of forecast-based monetary policy rules that set the interest rate in response to expected future inflation in a Neo-Wicksellian model that incorporates real balance effects. We show that the presence of such effects in closed economies restricts the ability of the Taylor principle to prevent indeterminacy of the rational expectations equilibrium. The problem is exacerbated in open economies, particularly if the policy rule reacts to consumer-price, rather than domestic-price, inflation. However, determinacy can be restored in both closed and open economies with the addition of monetary policy inertia.
Resumo:
The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.
Resumo:
Population modelling is increasingly recognised as a useful tool for pesticide risk assessment. For vertebrates that may ingest pesticides with their food, such as woodpigeon (Columba palumbus), population models that simulate foraging behaviour explicitly can help predicting both exposure and population-level impact. Optimal foraging theory is often assumed to explain the individual-level decisions driving distributions of individuals in the field, but it may not adequately predict spatial and temporal characteristics of woodpigeon foraging because of the woodpigeons’ excellent memory, ability to fly long distances, and distinctive flocking behaviour. Here we present an individual-based model (IBM) of the woodpigeon. We used the model to predict distributions of foraging woodpigeons that use one of six alternative foraging strategies: optimal foraging, memory-based foraging and random foraging, each with or without flocking mechanisms. We used pattern-oriented modelling to determine which of the foraging strategies is best able to reproduce observed data patterns. Data used for model evaluation were gathered during a long-term woodpigeon study conducted between 1961 and 2004 and a radiotracking study conducted in 2003 and 2004, both in the UK, and are summarised here as three complex patterns: the distributions of foraging birds between vegetation types during the year, the number of fields visited daily by individuals, and the proportion of fields revisited by them on subsequent days. The model with a memory-based foraging strategy and a flocking mechanism was the only one to reproduce these three data patterns, and the optimal foraging model produced poor matches to all of them. The random foraging strategy reproduced two of the three patterns but was not able to guarantee population persistence. We conclude that with the memory-based foraging strategy including a flocking mechanism our model is realistic enough to estimate the potential exposure of woodpigeons to pesticides. We discuss how exposure can be linked to our model, and how the model could be used for risk assessment of pesticides, for example predicting exposure and effects in heterogeneous landscapes planted seasonally with a variety of crops, while accounting for differences in land use between landscapes.
Resumo:
Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing good model fits to field population data. The ability of the presented model to fit the available field and laboratory data for E. fetida demonstrates the promise of the agent-based approach in ecology, by showing how biological knowledge can be used to make ecological inferences. Further work is required to extend the approach to populations of more ecologically relevant species studied at the field scale. Such a model could help extrapolate from laboratory to field conditions and from one set of field conditions to another or from species to species.
Resumo:
The potential risk of agricultural pesticides to mammals typically depends on internal concentrations within individuals, and these are determined by the amount ingested and by absorption, distribution, metabolism, and excretion (ADME). Pesticide residues ingested depend, amongst other things, on individual spatial choices which determine how much and when feeding sites and areas of pesticide application overlap, and can be calculated using individual-based models (IBMs). Internal concentrations can be calculated using toxicokinetic (TK) models, which are quantitative representations of ADME processes. Here we provide a population model for the wood mouse (Apodemus sylvaticus) in which TK submodels were incorporated into an IBM representation of individuals making choices about where to feed. This allows us to estimate the contribution of individual spatial choice and TK processes to risk. We compared the risk predicted by four IBMs: (i) “AllExposed-NonTK”: assuming no spatial choice so all mice have 100% exposure, no TK, (ii) “AllExposed-TK”: identical to (i) except that the TK processes are included where individuals vary because they have different temporal patterns of ingestion in the IBM, (iii) “Spatial-NonTK”: individual spatial choice, no TK, and (iv) “Spatial-TK”: individual spatial choice and with TK. The TK parameters for hypothetical pesticides used in this study were selected such that a conventional risk assessment would fail. Exposures were standardised using risk quotients (RQ; exposure divided by LD50 or LC50). We found that for the exposed sub-population including either spatial choice or TK reduced the RQ by 37–85%, and for the total population the reduction was 37–94%. However spatial choice and TK together had little further effect in reducing RQ. The reasons for this are that when the proportion of time spent in treated crop (PT) approaches 1, TK processes dominate and spatial choice has very little effect, and conversely if PT is small spatial choice dominates and TK makes little contribution to exposure reduction. The latter situation means that a short time spent in the pesticide-treated field mimics exposure from a small gavage dose, but TK only makes a substantial difference when the dose was consumed over a longer period. We concluded that a combined TK-IBM is most likely to bring added value to the risk assessment process when the temporal pattern of feeding, time spent in exposed area and TK parameters are at an intermediate level; for instance wood mice in foliar spray scenarios spending more time in crop fields because of better plant cover.
Resumo:
Ships and wind turbines generate noise, which can have a negative impact on marine mammal populations by scaring animals away. Effective modelling of how this affects the populations has to take account of the location and timing of disturbances. Here we construct an individual-based model of harbour porpoises in the Inner Danish Waters. Individuals have their own energy budgets constructed using established principles of physiological ecology. Data are lacking on the spatial distribution of food which is instead inferred from knowledge of time-varying porpoise distributions. The model produces plausible patterns of population dynamics and matches well the age distribution of porpoises caught in by-catch. It estimates the effect of existing wind farms as a 10% reduction in population size when food recovers fast (after two days). Proposed new wind farms and ships do not result in further population declines. The population is however sensitive to variations in mortality resulting from by-catch and to the speed at which food recovers after being depleted. If food recovers slowly the effect of wind turbines becomes negligible, whereas ships are estimated to have a significant negative impact on the population. Annual by-catch rates ≥10% lead to monotonously decreasing populations and to extinction, and even the estimated by-catch rate from the adjacent area (approximately 4.1%) has a strong impact on the population. This suggests that conservation efforts should be more focused on reducing by-catch in commercial gillnet fisheries than on limiting the amount of anthropogenic noise. Individual-based models are unique in their ability to take account of the location and timing of disturbances and to show their likely effects on populations. The models also identify deficiencies in the existing database and can be used to set priorities for future field research.
Resumo:
Earthworms are significant ecosystem engineers and are an important component of the diet of many vertebrates and invertebrates, so the ability to predict their distribution and abundance would have wide application in ecology, conservation and land management. Earthworm viability is known to be affected by the availability and quality of food resources, soil water conditions and temperature, but has not yet been modelled mechanistically to link effects on individuals to field population responses. Here we present a novel model capable of predicting the effects of land management and environmental conditions on the distribution and abundance of Aporrectodea caliginosa, the dominant earthworm species in agroecosystems. Our process-based approach uses individual based modelling (IBM), in which each individual has its own energy budget. Individual earthworm energy budgets follow established principles of physiological ecology and are parameterised for A. caliginosa from experimental measurements under optimal conditions. Under suboptimal conditions (e.g. food limitation, low soil temperatures and water contents) reproduction is prioritised over growth. Good model agreement to independent laboratory data on individual cocoon production and growth of body mass, under variable feeding and temperature conditions support our representation of A. caliginosa physiology through energy budgets. Our mechanistic model is able to accurately predict A. caliginosa distribution and abundance in spatially heterogeneous soil profiles representative of field study conditions. Essential here is the explicit modelling of earthworm behaviour in the soil profile. Local earthworm movement responds to a trade-off between food availability and soil water conditions, and this determines the spatiotemporal distribution of the population in the soil profile. Importantly, multiple environmental variables can be manipulated simultaneously in the model to explore earthworm population exposure and effects to combinations of stressors. Potential applications include prediction of the population-level effects of pesticides and changes in soil management e.g. conservation tillage and climate change.
Resumo:
Current European Union regulatory risk assessment allows application of pesticides provided that recovery of nontarget arthropods in-crop occurs within a year. Despite the long-established theory of source-sink dynamics, risk assessment ignores depletion of surrounding populations and typical field trials are restricted to plot-scale experiments. In the present study, the authors used agent-based modeling of 2 contrasting invertebrates, a spider and a beetle, to assess how the area of pesticide application and environmental half-life affect the assessment of recovery at the plot scale and impact the population at the landscape scale. Small-scale plot experiments were simulated for pesticides with different application rates and environmental half-lives. The same pesticides were then evaluated at the landscape scale (10 km × 10 km) assuming continuous year-on-year usage. The authors' results show that recovery time estimated from plot experiments is a poor indicator of long-term population impact at the landscape level and that the spatial scale of pesticide application strongly determines population-level impact. This raises serious doubts as to the utility of plot-recovery experiments in pesticide regulatory risk assessment for population-level protection. Predictions from the model are supported by empirical evidence from a series of studies carried out in the decade starting in 1988. The issues raised then can now be addressed using simulation. Prediction of impacts at landscape scales should be more widely used in assessing the risks posed by environmental stressors.
Resumo:
We apply a new parameterisation of the Greenland ice sheet (GrIS) feedback between surface mass balance (SMB: the sum of surface accumulation and surface ablation) and surface elevation in the MAR regional climate model (Edwards et al., 2014) to projections of future climate change using five ice sheet models (ISMs). The MAR (Modèle Atmosphérique Régional: Fettweis, 2007) climate projections are for 2000–2199, forced by the ECHAM5 and HadCM3 global climate models (GCMs) under the SRES A1B emissions scenario. The additional sea level contribution due to the SMB– elevation feedback averaged over five ISM projections for ECHAM5 and three for HadCM3 is 4.3% (best estimate; 95% credibility interval 1.8–6.9 %) at 2100, and 9.6% (best estimate; 95% credibility interval 3.6–16.0 %) at 2200. In all results the elevation feedback is significantly positive, amplifying the GrIS sea level contribution relative to the MAR projections in which the ice sheet topography is fixed: the lower bounds of our 95% credibility intervals (CIs) for sea level contributions are larger than the “no feedback” case for all ISMs and GCMs. Our method is novel in sea level projections because we propagate three types of modelling uncertainty – GCM and ISM structural uncertainties, and elevation feedback parameterisation uncertainty – along the causal chain, from SRES scenario to sea level, within a coherent experimental design and statistical framework. The relative contributions to uncertainty depend on the timescale of interest. At 2100, the GCM uncertainty is largest, but by 2200 both the ISM and parameterisation uncertainties are larger. We also perform a perturbed parameter ensemble with one ISM to estimate the shape of the projected sea level probability distribution; our results indicate that the probability density is slightly skewed towards higher sea level contributions.
Resumo:
The urban boundary layer (UBL) is the part of the atmosphere in which most of the planet’s population now lives, and is one of the most complex and least understood microclimates. Given potential climate change impacts and the requirement to develop cities sustainably, the need for sound modelling and observational tools becomes pressing. This review paper considers progress made in studies of the UBL in terms of a conceptual framework spanning microscale to mesoscale determinants of UBL structure and evolution. Considerable progress in observing and modelling the urban surface energy balance has been made. The urban roughness sub-layer is an important region requiring attention as assumptions about atmospheric turbulence break down in this layer and it may dominate coupling of the surface to the UBL due to its considerable depth. The upper 90% of the UBL (mixed and residual layers) remains under-researched but new remote sensing methods and high resolution modelling tools now permit rapid progress. Surface heterogeneity dominates from neighbourhood to regional scales and should be more strongly considered in future studies. Specific research priorities include humidity within the UBL, high-rise urban canopies and the development of long-term, spatially extensive measurement networks coupled strongly to model development.