984 resultados para Population Divergence
Resumo:
稻属Oryza隶属禾本科Poaceae,包括20多个野生种和2个栽培种(亚洲栽培稻O. sativa L和非洲栽培稻O. glaberrima Steud) ,广泛分布于全球热带和亚热带。稻属物种可划分为10个基因组(又称染色体组)类型:A, B, C, BC, CD, E, F, G, HJ 和 HK。栽培稻所属的A基因组是稻属中物种数目最多、地理分布最广的基因组类型,由8个种组成。由于栽培稻属于A基因组,故A基因组物种是栽培稻遗传改良的巨大基因源。数十年来,国际上许多学者对A基因组类群开展了大量涉及形态、细胞、同工酶和分子标记方面的研究,但由于A基因组物种间遗传关系十分接近,形态上差异小且地理分布重叠,使得A基因组物种的系统发育、物种起源和生物地理学等方面存在诸多悬而未决的问题,是稻属中分类和鉴定困难较多的类群。本文利用核基因内含子序列,结合转座子插入分析,重建了A基因组的系统发育,估测了各类群的分化时间;与此同时,基于多克隆测序和基因谱系分析,探讨了O. rufipogon和O. nivara遗传关系以及亚洲栽培稻起源。主要研究结果如下: 1. A基因组的系统发育 在水稻全基因组数据库搜索的基础上,测定了4个单拷贝核基因(Adh1 及3个未注释基因)的内含子序列,构建了稻属A基因组8个种的系统发育关系。基于最大简约法和贝叶斯法的系统发育分析表明:1)澳大利亚的O. meridionalis为A基因组的基部类群;2)亚洲栽培稻两个亚种O. sativa ssp. japonica 和 O. sativa ssp. indica分别和不同的野生类群聚为独立的两个分支,支持japonica 和 indica为多次起源;3)O. rufipogon和O. nivara在系统发育树上完全混在一起,显示出二者间不存在遗传分化;4)非洲一年生野生种O. barthii是非洲栽培稻O. glaberrima的祖先,而非洲多年生野生种O. longistaminata与O. glaberrima/O. barthii.亲缘关系较远;5)分子钟方法估测A基因组类群约在2百万年前(2.0MYA)开始分化,亚洲栽培稻和非洲栽培稻,以及亚洲栽培稻的两个亚种则分别在0.7和 0.4 MYA左右开始分化。此外,通过核基因内含子序列与其它常用片段如ITS,matK等对比分析表明,进化速率相对较快的核基因内含子序列可以有效地用于近缘类群的系统发育研究。 2. Oryza rufipogon 和O. nivara群体遗传研究及亚洲栽培稻起源 对于亚洲野生类群O. rufipogon和O. nivara是合并为一个种还是处理为两个独立的种一直存在争议。在系统发育研究基础上,我们选取4个核基因内含子或5’-UTR区(Waxy, LHS,CatA和1个未注释基因),对采自整个分布区的群体样品进行了多克隆测序,结果表明:1)检测到O. rufipogon和O. nivara均有较高的核苷酸多态性,4个位点上π值和θw值平均分别为0.011和0.014;2)且二者在遗传上没有明显分化,两个类群在4个核基因位点上均检测到大量共享多态(shared polymorphism),未发现固有差异(fixed difference),表明它们历史上可能属于一个大群体,支持将二者作为种内不同生态型或亚种处理;3)基因谱系树表明亚洲栽培稻的两个亚种indica和japonica分别和不同的O. rufipogon (包括O. nivara)群体聚在一起,进一步从基因谱系角度支持亚洲栽培稻多次起源假说。 3.转座子在群体遗传与系统发育研究中的应用 鉴于目前植物谱系地理学研究中缺乏具有足够信息量的分子标记用于检测种内遗传变异,我们选取3个核基因中的转座子,通过对取自O. rufipogon和O. nivara整个分布区的37份样品的克隆测序,探讨了进化速率快、信息含量丰富的转座子序列在群体遗传上的应用。结果表明:1)无论在物种水平还是群体水平,转座子能检测到比包括内含子在内的其它DNA区域高得多的遗传变异;2)在物种水平上,异交多年生的O. rufipogon和自交一年生的O. nivara多样性均较高,且2个种间相差很小,二者在3个位点上平均核苷酸多样性π值均为0.013,差别主要表现在O. rufipogon杂合位点比例(46.1%)明显高于O. nivara(9.1%),说明交配系统不同并不一定和物种多样性水平相关;3)是否发生转座子序列插入是有价值的系统发育信息,发生在不同染色体上3个基因中的转座子插入进一步证实A基因组基部类群是O. meridionalis;通过叶绿体中3个转座子的插入现象推断了稻族一些四倍体物种,如稻属BC基因组的一些类群的母本来源。
Resumo:
Cobia (Rachycentron canadum) is a pelagic, migratory species with a transoceanic distribution in tropical and subtropical waters. Recreational fishing pressure on Cobia in the United States has increased substantially during the last decade, especially in areas of its annual inshore aggregations, making this species potentially susceptible to overfishing. Although Cobia along the Atlantic and Gulf coasts of the southeastern United States are currently managed as a single fishery, the genetic composition of Cobias in these areas is unclear. On the basis of a robust microsatellite data set from collections along the U.S. Atlantic coast (2008–09), offshore groups were genetically homogenous. However, the 2 sampled inshore aggregations (South Carolina and Virginia) were genetically distinct from each other, as well as from the offshore group. The recapture of stocked fish within their release estuary 2 years after release indicates that some degree of estuarine fidelity occurs within these inshore aggregations and supports the detection of their unique genetic structure at the population level. These results complement the observed high site fidelity of Cobias in South Carolina and support a recent study that confirms that Cobia spawn in the inshore aggregations. Our increased understanding of Cobia life history will be beneficial for determining the appropriate scale of fishery management for Cobia.