899 resultados para Polyurethane nanocomposites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To improve the mechanical properties of the composites of poly(lactide-co-glycolide) (PLGA, LA/GA = 80/20) and the carbonate hydroxyapatite (CHAP) particles, the rice-form or claviform CHAP particles with 30-40 nm in diameter and 100-200 nm in length were prepared by precipitation method. The uncalcined CHAP particles have a coarse surface with a lot of global protuberances, which could be in favor of the interaction of the matrix polymer to the CHAP particles. The nanocomposites of PLGA and surface grafted CHAP particles (g-CHAP) were prepared by solution mixing method. The structure and properties of the composites were subsequently investigated by the emission scanning electron microscopy, the tensile strength testing, and the cell culture. When the contents of g-CHAP were in the range of 2-15 wt %, the PLGA/g-CHAP nanocomposites exhibited an improved elongation at break and tensile strength. At the 2 wt % content of g-CHAP, the fracture strain was increased to 20%) from 4-5% for neat PLGA samples. Especially at g-CHAP content of 15 wt %, the tensile strength of PLGA/g-CHAP composite was about 20% higher than that of neat PLGA materials. The tensile moduli of composites were increased with the increasing of filler contents, so that the g-CHAP particles had both reinforcing and toughening effects on the PLGA composites. The results of biocompatibility test showed that the higher g-CHAP contents in PLGA composite facilitated the adhesion and proliferation properties of osteoblasts on the PLGA/g-CHAP composite film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel biodegradable triblock copolymer poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-lysine) (PEG-PLA-PLL) was synthesized by acidolysis of poly(ethylene glycol)-b-poly(L-lactide)-b-poly(F-benzyloxycarbonyl-L-lysine) (PEG-PLA-PZLL) obtained by the ring-opening polymerization (ROP) of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride (ZLys NCA) with amino-terminated PEG-PLA-NH2 as a macro-initiator, and the pendant amino groups of the lysine residues were modified with a peptide known to modulate cellular functions, Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY, abbreviated as RGD) in the presence of 1,1'-carbonyldiimidazole (CDI). The structures of PEG-PLA-PLL/RGD and its precursors were confirmed by H-1 NMR, FT-IR, amino acid analysis and XPS analysis. The cell adhesion and cell spread on the PEG-PLA-PLL/RGD film were enhanced compared to those on pure PLA film. Therefore, the novel RGD-grafted triblock copolymer is promising for cell or tissue engineering applications. Both copolymers PEG-PLA-PZLL and PEG-PLA-PLL showed an amphiphilic nature and could self-assemble into micelles of homogeneous spherical morphology. The micelles were determined by fluorescence technique, dynamic light scattering (DLS), and field emission scanning electron microscopy (ESEM) and could be expected to find application in drug and gene delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of segmented poly (L-lactide)-polyurethanes (PLA-PU) were synthesized by a two-step method, with oligo-poly(L-lactide) (PLA) as the soft segments and the reaction product of 2,4-toluene diisocyanate(TDI) and ethylene glycol(EG) as the hard segments. The shape memory properties of PLA-PUs were examined. The processed PLA-PUs could recover almost 100% to their original shape within 10 degrees C from the lowest recovery temperature. In the recovery process, the PLA-PUs showed a maximum contracting stress of shape change in the range of 1.5-4 MPa depending on the PLA segmental length and the hard-segmental content and higher than that of poly (e-caprolactone polyurethane) (PCL-PU). Besides, the influence of deforming and fixing temperatures on shape memory properties of PLA-PU was studied in detail. They could affect not only the recovery temperature but also the maximum contracting stress. The experiments of cell incubation were used to evaluate the biocompatibility of PLA-PU. The results show that the biocompatibility of PLA-PU is comparable to that of the pure PLA. This kind of polyurethane can be used as implanted medical devices with a shape memory property.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The poly(vinyl alcohol)/ poly(N-vinyl pyrrolidone) (PVA-PVP) hydrogels containing silver nanoparticles were prepared by repeated freezing-thawing treatment. The silver content in the solid composition was in the range of 0.1-1.0 wt %, the silver particle size was from 20 to 100 nm, and the weight ratio of PVA to PVP was 70 : 30. The influence of silver nanoparticles on the properties of PVA-PVP matrix was investigated by differential scanning calorimeter, infrared spectroscopy and UV-vis spectroscopy, using PVA-PVP films containing silver particles as a model. The morphology of freeze-dried PVA-PVP hydrogel matrix and dispersion of the silver nanoparticles in the matrix was examined by scanning electron microscopy. It was found that a three-dimensional structure was formed during the process of freezing-thawing treatment and no serious aggregation of the silver nanoparticles occurred. Water absorption properties, release of silver ions from the hydrogels and the antibacterial effects of the hydrogels against Escherichia coli and Staphylococcus aureus were examined too. It was proved that the nanosilver-containing hydrogels had an excellent antibacterial ability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new surface modification method by grafting L-lactic acid oligomer onto the surface silanol groups of silica nanoparticles has been developed. The surface-grafting reaction is confirmed by IR and Si-29 MAS NMR analyses. TEM and SEM results show that grafted SiO2 (g-SiO2) nanoparticles can be comparatively uniformly dispersed in chloroform or PLLA matrix, while the unmodified SiO2 nanoparticles tend to aggregate. The loading of g-SiO2 nanoparticles in poly(L-lactide) (PLLA) matrix greatly improves the toughness and tensile strength of this material. In contrast, the incorporation of un-grafted SiO2 nanoparticles into PLLA leads to the deterioration of its mechanical properties. DSC analysis shows that g-SiO2 nanoparticles can serve as a nucleating agent for the crystallization of PLLA in the composites. SEM characterization shows the tough characteristics and great interfacial combination strength for g-SiO2 (5wt%)/PLLA nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SiO2/polyacrylamide (PAM) composite was prepared via the polymerization of acrylamide in the presence of silica sol in water/hexane emulsion, and pure SiO2 was also prepared without the use of acrylamide in the same way. Field emission scanning electron micrographs (FESEM) showed that PAM covered the silica nanoparticles to form SiO2/PAM nanospheres, which loosely agglomerated to form SiO2/PAM secondary particles, while SiO2 secondary particles were made up of tightly agglomerated silica nanoparticles. Metallocene catalyst was then immobilized over SiO2 and SiO2/PAM respectively to prepare supported metallocene catalyst for ethylene polymerization. Transmission electron micrographs (TEM) showed that support particles broke up to smaller particles and even nanoparticles in polyethylene (PE) matrix when the support particles were the fragile SiO2/PAM secondary particles, which shows a novel way to prepare silica/polyacrylamide/polyethylene nanocomposite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly stable silver nanoclusters with narrow size distribution have been prepared by heating a third-generation poly(propyleneimine) dendrimer/AgNO3 aqueous solution without the additional step of introducing other reducing agents and protect agents. UV-vis absorption, transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), and X-ray diffraction (XRD) have been used to characterize the resulting products. The as-obtained sample was in coexistence of Ag and Ag2O. It also suggested that increasing temperature resulted in both the decrease in number of small particles and the increase in size of large particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substantial progress has been made recently in extending the supramolecular assembly of biomimetic structures to vesicle-based sophisticated nanocomposites and mesostructures. We report herein the successful preparation of unilamellar surfactant vesicles coated with a monolayer of ring-shaped {Mo-154} polyoxometalate (POM) nanoclusters, (NH4)(28)[Mo-154 (NO)(14)O(448)Hi(4)(H2O)(70)].approximate to 350H(2)O, by coulomb attractions using preformed didodecyldimethylammonium bromide (DDAB) surfactant vesicles as templates. The resultant vesicle-templated supramolecular assemblies are robust (they do not disintegrate upon dehydration) both at room-temperature ambient and vacuum conditions, as characterized by conventional transmission electron microscopy (TEM) and atomic force microscopy (AFM). The flexibility of the complex soft assemblies was also revealed by AFM measurements. The effect of POM-vesicle coulomb attractions on the dimensions of the templating vesicles was also investigated by using dynamic light scattering (DLS).Although origins of the structure stability of the as-prepared supramolecular assemblies are not clear yet, the nanometer scale cavities and the related properties of macroions of the POM clusters may play an important role in it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and multi-walled carbon nanotubes (MWNTs) were prepared by solution processing. Ultrasonic energy was used to uniformly disperse MWNTs in solutions and to incorporate them into composites. Microscopic observation reveals that polymer-coated MWNTs dispersed homogenously in the PHBV matrix. The thermal properties and the crystallization behavior of the composites were characterized by thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction, the nucleant effect of MWNTs on the crystallization of PHBV was confirmed, and carbon nanotubes were found to enhanced the thermal stability of PHBV in nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the measurements of conductivity, I-V curve, and magnetoresistance of a single Au/polyaniline microfiber with a core-shell structure, on which a pair of platinum microleads was attached by focused ion beam. The Au/polyaniline microfiber shows a much higher conductivity (similar to 110 S/cm at 300 K) and a much weaker temperature dependence of resistance [R(4 K)/R(300 K)=5.1] as compared with those of a single polyaniline microtube [sigma(RT)=30-40 S/cm and R(4 K)/R(300 K)=16.2]. The power-law dependence of R(T)proportional to T-beta, with beta=0.38, indicates that the measured Au/polyaniline microfiber is lying in the critical regime of the metal-insulator transition. In addition, the microfiber shows a H-2 dependent positive magnetoresistance at 2, 4, and 6 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWCNTs) as reinforcing components were extended into silica monoliths and thin films via covalent functionalization for the first time. Silica materials have poor mechanical attributes, which limit their applications. Because of the extreme flexibility of SWCNTs and their large interfacial area, they may be very intriguing as reinforcing fillers for the silica matrix. To get more uniform dispersion and stronger interfacial interaction, SWCNTs were covalently functionalized with silane, and then integrated into silica via a sol - gel process, and their properties were also compared with those of pristine SWCNTs. Results show that the silane-functionalized nanotubes resulted in better mechanical properties ( for example, 33% increase in stress, and 53% increase in toughness), as well as higher electron-transfer kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A composite film composed of porous polyurethane (PU) and polystyrene (PS) microspheres with both superhydrophobicity and superoleophilicity has been prepared. In this film, the dual-scale structure enhances both the hydrophobicity and oleophilicity of the surface material. The composite film with such an 'intelligent' wettability property can be utilized to separate oil and water systems efficiently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel and facile chemical synthesis of highly faceted multiply twinned gold nanocrystals is reported. The gold nanocrystals are hexagonal in transmission electron microscopy and icosahedral in scanning electron microscopy. Phosphotungstic acid (PTA), which was previously reduced, serves as a reductant and stabilizer for the synthesis of gold nanocrystals. The PTA-gold nanocomposites are quite stable in aqueous solutions, and electrochemically active towards the hydrogen evolution reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ring- and rod-shaped P4VP-b-PS-b-P4VP ( PS, polystyrene; P4VP, poly( 4-vinylpyridine)) triblock copolymer aggregates are used as templates to synthesize ZnS nanocrystals. Herein, PVP serves as both a stabilizing agent and a structure- directing agent. The resulting ZnS nanocrystals could be aligned along the corona of the copolymer aggregates in near-perfect structures through control of both the molar ratio of Zn2+ to P4VP and the reaction time. The diameter of the as-synthesized ZnS layer on the surface of polymer template is approximate 2 - 3 nm. High-resolution transmission electron microscopy images reveal that the ZnS particles are single crystal in a zinc blende structure. This method provides a simple, reproducible route at room temperature to prepare assembled hybrid polymer - semiconductor nanocrystal nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graft chain propagation rate coefficients (k(p.g)) for grafting AA onto linear low density polyethylene (LLDPE) in the melt in ESR tubes have been measured via Fourier transform infrared (FTIR) spectroscopy and electron spin resonance (ESR) spectroscopy in the temperature range from 130 to 170 degrees C. To exclude the effect of homopolymerization on the grafting. the LLDPE was pre-irradiated in the air by electron beam to generate the peroxides and then treated with iodide solution to eliminating one kind of peroxides, hydroperoxide. The monomer conversion is determined by FTIR and the chain propagation free-radical concentration is deduced from the double integration of the well-resolved ESR spectra, consisting nine lines in the melt. The temperature dependence of k(p.g) is expressed:The magnitude of k(p.g) from FTIR and ESR analysis is in good agreement with the theoretical data deduced from ethylene-AA copolymerization, suggesting this method could reliably and directly provide the propagation rate coefficient. The comparison of k(p.g) with the data extrapolated from solution polymerization at modest temperature indicates that the extrapolated data might not be entirely fitting to discuss the kinetics behavior in the melt.