973 resultados para Polymers and Plastics
Resumo:
Metabolic engineering of plants allows the possibility of using crops for the synthesis of novel polymers having useful material properties. Strong and flexible protein-based polymers, which are based on the structure of silk and elastin have been synthesized in transgenic plants. A wide range of polyhydroxyalkanoates having properties ranging from stiff plastics to soft elastomers and glues have been synthesized in various compartments of plants, such as the cytoplasm, plastid and peroxisome. These plant biomaterials could replace, in part, the synthetic plastics, fibers and elastomers produced from petroleum, thus offering the advantage of renewability, sustainability and biodegradability.
Resumo:
The concept of ideal geometric configurations was recently applied to the classification and characterization of various knots. Different knots in their ideal form (i.e., the one requiring the shortest length of a constant-diameter tube to form a given knot) were shown to have an overall compactness proportional to the time-averaged compactness of thermally agitated knotted polymers forming corresponding knots. This was useful for predicting the relative speed of electrophoretic migration of different DNA knots. Here we characterize the ideal geometric configurations of catenanes (called links by mathematicians), i.e., closed curves in space that are topologically linked to each other. We demonstrate that the ideal configurations of different catenanes show interrelations very similar to those observed in the ideal configurations of knots. By analyzing literature data on electrophoretic separations of the torus-type of DNA catenanes with increasing complexity, we observed that their electrophoretic migration is roughly proportional to the overall compactness of ideal representations of the corresponding catenanes. This correlation does not apply, however, to electrophoretic migration of certain replication intermediates, believed up to now to represent the simplest torus-type catenanes. We propose, therefore, that freshly replicated circular DNA molecules, in addition to forming regular catenanes, may also form hemicatenanes.
Resumo:
Fecal incontinence (FI) is the involuntary loss of rectal contents through the anal canal. Reports of its prevalence vary from 1-21%. Studies, have demonstrated a positive effect on FI symptoms with injectable bulking agents. This study evaluated the safety and efficacy of NASHA/Dx gel in the treatment of FI. One hundred fifteen eligible patients suffering from FI received 4 injections of 1 mL NASHA/Dx gel. Primary efficacy was based on data from 86 patients that completed the study. This study demonstrated a ≥50% reduction from baseline in the number of FI episodes in 57.1% of patients at 6 months, and 64.0% at 12 months. Significant improvements (P < .001) were also noted in total number of both solid and loose FI episodes, FI free days, CCFIS, and FIQL scores in all 4 domains. The majority of the treatment related AEs (94.9%) were mild or moderate intensity, and (98.7%) of AEs resolved spontaneously, or following treatment, without sequelae. Results of this study indicate NASHA/Dx gel was efficacious in the treatment of FI. Treatment effect was significant both in reduction of number of FI episodes and disease specific quality of life at 6 months and lasted up to 12 months after treatment.
Resumo:
Discordances exist in epidemiological studies regarding the association between the intake of nutrients and death and disease. We evaluated the social and health profile of persons who consumed olive oil in a prospective population cohort investigation (Pizarra study) with a 6-year follow-up. A food frequency questionnaire and a 7 d quantitative questionnaire were administered to 538 persons. The type of oil used in food preparation was determined by direct measurement of the fatty acids in samples obtained from the kitchens of the participants at baseline and after follow-up for 6 years. The fatty acid composition of the serum phospholipids was used as an endogenous marker of the type of oil consumed. Total fat intake accounted for a mean 40 % of the energy (at baseline and after follow-up). The concordance in intake of MUFA over the study period was high. The fatty acid composition of the serum phospholipids was significantly associated with the type of oil consumed and with fish intake. The concentration of polar compounds and polymers, indicative of degradation, was greater in oils from the kitchens where sunflower oil or refined olive oil was used, in oils used for deep frying and in oils that had been reused for frying five times or more. Consumption of olive oil was directly associated with educational level. Part of the discordance found in epidemiological studies between diet and health may be due to the handling of oils during food preparation. The intake of olive oil is associated with other healthy habits.
Resumo:
Neural crest cells (NCC) give rise to much of the tissue that forms the vertebrate head and face, including cartilage and bone, cranial ganglia and teeth. In this study we show that conditional expression of a dominant-negative (DN) form of Rho kinase (Rock) in mouse NCC results in severe hypoplasia of the frontonasal processes and first pharyngeal arch, ultimately resulting in reduction of the maxilla and nasal bones and severe craniofacial clefting affecting the nose, palate and lip. These defects resemble frontonasal dysplasia in humans. Disruption of the actin cytoskeleton, which leads to abnormalities in cell-matrix attachment, is seen in the RockDN;Wnt1-cre mutant embryos. This leads to elevated cell death, resulting in NCC deficiency and hypoplastic NCC-derived craniofacial structures. Rock is thus essential for survival of NCC that form the craniofacial region. We propose that reduced NCC numbers in the frontonasal processes and first pharyngeal arch, resulting from exacerbated cell death, may be the common mechanism underlying frontonasal dysplasia.
Resumo:
BACKGROUND Pollen is one of the main causes of allergic sensitization. It is not easy to make an etiological diagnosis of pollen-allergic patients because of the wide variety of sensitizing pollens, association with food allergy, and increasing incidence of polysensitization, which may result from the presence of allergens that are common to different species, as is the case of panallergens. OBJECTIVE To compare the results of skin prick tests (SPT) using whole pollen extract with specific immunoglobulin (Ig) E determination for several allergens (purified panallergens included) in the diagnosis of polysensitized pollen-allergic patients. METHODS The study sample comprised 179 pollen-sensitized patients who underwent SPT with pollen extract and allergen-specific IgE determination against different allergens. RESULTS The level of concordance between the traditional diagnostic test (SPT) and IgE determination was low, especially in patients sensitized to the panallergens profilin and polcalcin. In the case of SPT, the results demonstrated that patients who are sensitized to either of these panallergens present a significantly higher number of positive results than patients who are not. However, IgE determination revealed that while patients sensitized to polcalcins are sensitized to allergens from a higher number of pollens than the rest of the sample, this is not the case in patients sensitized to profilins. On the other hand, sensitization to profilin or lipid transfer proteins was clearly associated with food allergy. CONCLUSIONS Sensitization to panallergens could be a confounding factor in the diagnosis of polysensitized pollen-allergic patients as well as a marker for food allergy. However, more studies are required to further investigate the role of these molecules.
Resumo:
INTRODUCTION Recurrence risk in breast cancer varies throughout the follow-up time. We examined if these changes are related to the level of expression of the proliferation pathway and intrinsic subtypes. METHODS Expression of estrogen and progesterone receptor, Ki-67, human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR) and cytokeratin 5/6 (CK 5/6) was performed on tissue-microarrays constructed from a large and uniformly managed series of early breast cancer patients (N = 1,249). Subtype definitions by four biomarkers were as follows: luminal A (ER + and/or PR+, HER2-, Ki-67 <14), luminal B (ER + and/or PR+, HER2-, Ki-67 ≥14), HER2-enriched (any ER, any PR, HER2+, any Ki-67), triple-negative (ER-, PR-, HER2-, any Ki-67). Subtype definitions by six biomarkers were as follows: luminal A (ER + and/or PR+, HER2-, Ki-67 <14, any CK 5/6, any EGFR), luminal B (ER + and/or PR+, HER2-, Ki-67 ≥14, any CK 5/6, any EGFR), HER2-enriched (ER-, PR-, HER2+, any Ki-67, any CK 5/6, any EGFR), Luminal-HER2 (ER + and/or PR+, HER2+, any Ki-67, any CK 5/6, any EGFR), Basal-like (ER-, PR-, HER2-, any Ki-67, CK5/6+ and/or EGFR+), triple-negative nonbasal (ER-, PR-, HER2-, any Ki-67, CK 5/6-, EGFR-). Each four- or six-marker defined intrinsic subtype was divided in two groups, with Ki-67 <14% or with Ki-67 ≥14%. Recurrence hazard rate function was determined for each intrinsic subtype as a whole and according to Ki-67 value. RESULTS Luminal A displayed a slow risk increase, reaching its maximum after three years and then remained steady. Luminal B presented most of its relapses during the first five years. HER2-enriched tumors show a peak of recurrence nearly twenty months post-surgery, with a greater risk in Ki-67 ≥14%. However a second peak occurred at 72 months but the risk magnitude was greater in Ki-67 <14%. Triple negative tumors with low proliferation rate display a smooth risk curve, but with Ki-67 ≥14% show sharp peak at nearly 18 months. CONCLUSIONS Each intrinsic subtype has a particular pattern of relapses over time which change depending on the level of activation of the proliferation pathway assessed by Ki-67. These findings could have clinical implications both on adjuvant treatment trial design and on the recommendations concerning the surveillance of patients.
Resumo:
Tumoral necrosis factor α plays a central role in both the inflammatory response and that of the immune system. Thus, its blockade with the so-called anti-TNF agents (infliximab, etanercept, adalimumab, certolizumab pegol, and golimumab) has turned into the most important tool in the management of a variety of disorders, such as rheumatoid arthritis, spondyloarthropatties, inflammatory bowel disease, and psoriasis. Nonetheless, theoretically, some other autoimmune disorders may benefit from these agents. Our aim is to review these off-label uses of anti-TNF blockers in three common conditions: Behçet's disease, sarcoidosis, and noninfectious uveitis. Due to the insufficient number of adequate clinical trials and consequently to their lower prevalence compared to other immune disorders, this review is mainly based on case reports and case series.
Resumo:
Circulating tumor cells (CTCs) are frequently associated with epithelial-mesenchymal transition (EMT).The objective of this study was to detect EMT phenotype through Vimentin (VIM) and Slug expression in cytokeratin (CK)-negative CTCs in non-metastatic breast cancer patients and to determine the importance of EGFR in the EMT phenomenon. In CK-negative CTCs samples, both VIM and Slug markers were co-expressed in the most of patients. Among patients EGFR+, half of them were positive for these EMT markers. Furthermore, after a systemic treatment 68% of patients switched from CK- to CK+ CTCs. In our experimental model we found that activation of EGFR signaling by its ligand on MCF-7 cells is sufficient to increase EMT phenotypes, to inhibit apoptotic events and to induce the loss of CK expression. The simultaneous detection of both EGFR and EMT markers in CTCs may improve prognostic or predictive information in patients with operable breast cancer.
Resumo:
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.
Resumo:
The objective of this project consists of designing and constructing a RTM mould for a loose flange of glass fibre reinforced plastic (GRP). The design phase has the mission to realise a quality and simple design of the RTM mould, with the objective to obtain an easy and economic phase of construction and the more possible great characteristics of the loose flange. In fact this RTM mould will be a mould prototype, which will be developed in the future to obtain an RTM mould able to support a loose flange production. Therefore when more steps are developed in this project, then the future objective will be near
Resumo:
Development of dialysis has saved the lives of many patients. However, haemodialysis and peritoneal dialysis are very demanding in resources such as water and electricity, and generate a large amount of waste. In this article, we will review the environmental aspects of dialysis. Different solutions will be discussed, such as recycling of water discharged during reverse osmosis, the integration of solar energy, recycling of waste plastics, and the use of other techniques such as sorbent dialysis. In a world where natural resources are precious and where global warming is a major problem, it is important that not only dialysis, but all branches of medicine become more attentive to ecology.
Resumo:
Plants naturally synthesize a variety of polymers that have been used by mankind as a source of useful biomaterials. For example, cellulose, the main constituent of plant cell wall and the most abundant polymer on earth, has been used for several thousand years as a source of fibers for various fabrics. Similarly, rubber extracted from the bark of the tree Hevea brasiliensis, has been a major source of elastomers until the development of similar synthetic polymers. In the last century, the usefulness of plant polymers as biomaterials has been expanded through the chemical modification of the natural polymers. For example, a number of plastics have been made by substituting the hydroxyl groups present on the glucose moiety of cellulose with larger groups, such as nitrate or acetate, giving rise to materials such as cellulose acetate, a clear plastic used in consumer products such as toothbrush handles and combs. Similarly, starch has been used in the manufacture of plastics by either using it in blends with synthetic polymers or as the main constituent in biodegradable plastics. The advent of transformation and expres- sion of foreign genes in plants has created the possibility of expanding the usefulness of plants to include the synthesis of a range of biomolecules. In view of the capacity of certain crops to produce a large quantity of organic raw material at low cost, such as oils and starch, it is of interest to explore the possibility of using transgenic plants as efficient vectors for the synthesis of biopolymers. Such plant based biopolymers could replace, in part, the synthetic plastics and elastomers produced from petroleum, offering the advantage of renewability and sustainability. Furthermore, being natural pro- ducts, biopolymers are usually biodegradable and can thus contribute to alleviate problems associated with the management of plastic waste. In this article, the emphasis will be on the use of transgenic plants for the synthesis of two novel classes of industrially useful polymers, namely protein based polymers made from natural or artificial genes, and polyhydroxyalkanoates, a family of bacterial poly- esters having the properties of biodegradable plastics and elastomers.
Resumo:
Specialised plant cell types often locally modify their cell walls as part of a developmental program, as do cells that are challenged by particular environmental conditions. Modifications can include deposition of secondary cellulose, callose, cutin, suberin or lignin. Although the biosyntheses of cell wall components are more and more understood, little is known about the mechanisms that control localised deposition of wall materials. During metaxylem vessel differentiation, site-specific cell wall deposition is locally prevented by the microtubule depolymerising protein MIDD1, which disassembles the cytoskeleton and precludes the cellulose synthase complex from depositing cellulose. As a result, metaxylem vessel secondary cell wall appears pitted. How MIDD1 is tethered at the plasma membrane and how other cell wall polymers are locally deposited remain elusive. Casparian strips in the root endodermis represent a further example of local cell wall deposition. The recent discovery of the Casparian Strip membrane domain Proteins (CASPs), which are located at the plasma membrane and are important for the site-specific deposition of lignin during Casparian strip development, establishes the root endodermis as an attractive model system to study the mechanisms of localised cell wall modifications. How secondary modifications are modulated and monitored during development or in response to environmental changes is another question that still misses a complete picture.
Resumo:
Cutinized and suberized cell walls form physiological important plant-environment interfaces as they act as barriers limiting water and nutrient loss and protect from radiation and invasion by pathogens. Due to the lack of protocols for the isolation and analysis of cutin and suberin in Arabidopsis, the model plant for molecular biology, mutants and transgenic plants with a defined altered cutin or suberin composition are unavailable, causing that structure and function of these apoplastic barriers are still poorly understood. Transmission electron microscopy (TEM) revealed that Arabidopsis leaf cuticle thickness ranges from only 22 nm in leaf blades to 45 nm on petioles, causing the difficulty in cuticular membrane isolation. We report the use of polysaccharide hydrolases to isolate Arabidopsis cuticular membranes, suitable for depolymerization and subsequent compositional analysis. Although cutin characteristic omega-hydroxy acids (7%) and mid-chain hydroxylated fatty acids (8%) were detected, the discovery of alpha,omega-diacids (40%) and 2-hydroxy acids (14%) as major depolymerization products reveals a so far novel monomer composition in Arabidopsis cutin, but with chemical analogy to root suberin. Histochemical and TEM analysis revealed that suberin depositions were localized to the cell walls in the endodermis of primary roots and the periderm of mature roots of Arabidopsis. Enzyme digested and solvent extracted root cell walls when subjected to suberin depolymerization conditions released omega-hydroxy acids (43%) and alpha,omega-diacids (24%) as major components together with carboxylic acids (9%), alcohols (6%) and 2-hydroxyacids (0.1%). This similarity to suberin of other species indicates that Arabidopsis roots can serve as a model for suberized tissue in general.