866 resultados para Polymers - Industrial applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this proposal is to join together the owners of the most advanced CPV technology, with respect to the state of the art, in order to research from its leading position new applications for CPV systems. In addition to opening up new markets, it will unveil possible sources of failure in new environments outside Europe, in order to assure component reliability. The proposed project will also try to improve the current technology of the industrial partners (ISOFOTON and CONCENTRIX) by accelerating the learning curve that CPV must follow in order to reach the competitive market, and lowering the cost under the current flat panel PV significantly within 3-4 years. The use of CPV systems in remote areas, together with harsher radiation, ambient and infrastructure conditions will help to increase the rate of progress of this technology. In addition, the ISFOC s contribution, which brings together seven power plants from seven CPV technologies up to 3 MWpeak, will allow creating the most complete database of components and systems performance to be generated as well as the effects of radiation and meteorology on systems operations. Finally, regarding the new applications for CPV subject, the project will use a CPV system sized 25 kWp in a stand-alone station in Egypt (NWRC) for the first time for water pumping and irrigation purposes. In a similar way ISOFOTON will connect up to 25 kWp CPV to the Moroccan ONE utility grid. From the research content point of view of this project, which is directly addressed by the scope of the call, the cooperative research between UPM, FhG-ISE and the two companies will be favoured by the fact that all are progressing in similar directions: developing two-stage optics CPV systems. In addition to these technology improvements the UPM is very interested in developing a new concept of module, recently patented, which will fulfil all required characteristics of a good CPV with less components and reducing cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy efficiency is a major design issue in the context of Wireless Sensor Networks (WSN). If data is to be sent to a far-away base station, collaborative beamforming by the sensors may help to dis- tribute the load among the nodes and reduce fast battery depletion. However, collaborative beamforming techniques are far from opti- mality and in many cases may be wasting more power than required. In this contribution we consider the issue of energy efficiency in beamforming applications. Using a convex optimization framework, we propose the design of a virtual beamformer that maximizes the network's lifetime while satisfying a pre-specified Quality of Service (QoS) requirement. A distributed consensus-based algorithm for the computation of the optimal beamformer is also provided

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Reducing energy consumption in walking robots is an issue of great importance in field applications such as humanitarian demining so as to increase mission time for a given power supply. The purpose of this paper is to address the problem of improving energy efficiency in statically stable walking machines by comparing two leg, insect and mammal, configurations on the hexapod robotic platform SILO6. Design/methodology/approach – Dynamic simulation of this hexapod is used to develop a set of rules that optimize energy expenditure in both configurations. Later, through a theoretical analysis of energy consumption and experimental measurements in the real platform SILO6, a configuration is chosen. Findings – It is widely accepted that the mammal configuration in statically stable walking machines is better for supporting high loads, while the insect configuration is considered to be better for improving mobility. However, taking into account the leg dynamics and not only the body weight, different results are obtained. In a mammal configuration, supporting body weight accounts for 5 per cent of power consumption while leg dynamics accounts for 31 per cent. Originality/value – As this paper demonstrates, the energy expended when the robot walks along a straight and horizontal line is the same for both insect and mammal configurations, while power consumption during crab walking in an insect configuration exceeds power consumption in the mammal configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antecedentes Europa vive una situación insostenible. Desde el 2008 se han reducido los recursos de los gobiernos a raíz de la crisis económica. El continente Europeo envejece con ritmo constante al punto que se prevé que en 2050 habrá sólo dos trabajadores por jubilado [54]. A esta situación se le añade el aumento de la incidencia de las enfermedades crónicas, relacionadas con el envejecimiento, cuyo coste puede alcanzar el 7% del PIB de un país [51]. Es necesario un cambio de paradigma. Una nueva manera de cuidar de la salud de las personas: sustentable, eficaz y preventiva más que curativa. Algunos estudios abogan por el cuidado personalizado de la salud (pHealth). En este modelo las prácticas médicas son adaptadas e individualizadas al paciente, desde la detección de los factores de riesgo hasta la personalización de los tratamientos basada en la respuesta del individuo [81]. El cuidado personalizado de la salud está asociado a menudo al uso de las tecnologías de la información y comunicación (TICs) que, con su desarrollo exponencial, ofrecen oportunidades interesantes para la mejora de la salud. El cambio de paradigma hacia el pHealth está lentamente ocurriendo, tanto en el ámbito de la investigación como en la industria, pero todavía no de manera significativa. Existen todavía muchas barreras relacionadas a la economía, a la política y la cultura. También existen barreras puramente tecnológicas, como la falta de sistemas de información interoperables [199]. A pesar de que los aspectos de interoperabilidad están evolucionando, todavía hace falta un diseño de referencia especialmente direccionado a la implementación y el despliegue en gran escala de sistemas basados en pHealth. La presente Tesis representa un intento de organizar la disciplina de la aplicación de las TICs al cuidado personalizado de la salud en un modelo de referencia, que permita la creación de plataformas de desarrollo de software para simplificar tareas comunes de desarrollo en este dominio. Preguntas de investigación RQ1 >Es posible definir un modelo, basado en técnicas de ingeniería del software, que represente el dominio del cuidado personalizado de la salud de una forma abstracta y representativa? RQ2 >Es posible construir una plataforma de desarrollo basada en este modelo? RQ3 >Esta plataforma ayuda a los desarrolladores a crear sistemas pHealth complejos e integrados? Métodos Para la descripción del modelo se adoptó el estándar ISO/IEC/IEEE 42010por ser lo suficientemente general y abstracto para el amplio enfoque de esta tesis [25]. El modelo está definido en varias partes: un modelo conceptual, expresado a través de mapas conceptuales que representan las partes interesadas (stakeholders), los artefactos y la información compartida; y escenarios y casos de uso para la descripción de sus funcionalidades. El modelo fue desarrollado de acuerdo a la información obtenida del análisis de la literatura, incluyendo 7 informes industriales y científicos, 9 estándares, 10 artículos en conferencias, 37 artículos en revistas, 25 páginas web y 5 libros. Basándose en el modelo se definieron los requisitos para la creación de la plataforma de desarrollo, enriquecidos por otros requisitos recolectados a través de una encuesta realizada a 11 ingenieros con experiencia en la rama. Para el desarrollo de la plataforma, se adoptó la metodología de integración continua [74] que permitió ejecutar tests automáticos en un servidor y también desplegar aplicaciones en una página web. En cuanto a la metodología utilizada para la validación se adoptó un marco para la formulación de teorías en la ingeniería del software [181]. Esto requiere el desarrollo de modelos y proposiciones que han de ser validados dentro de un ámbito de investigación definido, y que sirvan para guiar al investigador en la búsqueda de la evidencia necesaria para justificarla. La validación del modelo fue desarrollada mediante una encuesta online en tres rondas con un número creciente de invitados. El cuestionario fue enviado a 134 contactos y distribuido en algunos canales públicos como listas de correo y redes sociales. El objetivo era evaluar la legibilidad del modelo, su nivel de cobertura del dominio y su potencial utilidad en el diseño de sistemas derivados. El cuestionario incluía preguntas cuantitativas de tipo Likert y campos para recolección de comentarios. La plataforma de desarrollo fue validada en dos etapas. En la primera etapa se utilizó la plataforma en un experimento a pequeña escala, que consistió en una sesión de entrenamiento de 12 horas en la que 4 desarrolladores tuvieron que desarrollar algunos casos de uso y reunirse en un grupo focal para discutir su uso. La segunda etapa se realizó durante los tests de un proyecto en gran escala llamado HeartCycle [160]. En este proyecto un equipo de diseñadores y programadores desarrollaron tres aplicaciones en el campo de las enfermedades cardio-vasculares. Una de estas aplicaciones fue testeada en un ensayo clínico con pacientes reales. Al analizar el proyecto, el equipo de desarrollo se reunió en un grupo focal para identificar las ventajas y desventajas de la plataforma y su utilidad. Resultados Por lo que concierne el modelo que describe el dominio del pHealth, la parte conceptual incluye una descripción de los roles principales y las preocupaciones de los participantes, un modelo de los artefactos TIC que se usan comúnmente y un modelo para representar los datos típicos que son necesarios formalizar e intercambiar entre sistemas basados en pHealth. El modelo funcional incluye un conjunto de 18 escenarios, repartidos en: punto de vista de la persona asistida, punto de vista del cuidador, punto de vista del desarrollador, punto de vista de los proveedores de tecnologías y punto de vista de las autoridades; y un conjunto de 52 casos de uso repartidos en 6 categorías: actividades de la persona asistida, reacciones del sistema, actividades del cuidador, \engagement" del usuario, actividades del desarrollador y actividades de despliegue. Como resultado del cuestionario de validación del modelo, un total de 65 personas revisó el modelo proporcionando su nivel de acuerdo con las dimensiones evaluadas y un total de 248 comentarios sobre cómo mejorar el modelo. Los conocimientos de los participantes variaban desde la ingeniería del software (70%) hasta las especialidades médicas (15%), con declarado interés en eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), medicina personalizada (5%), sistemas basados en pHealth (15%), informática médica (10%) e ingeniería biomédica (8%) con una media de 7.25_4.99 años de experiencia en estas áreas. Los resultados de la encuesta muestran que los expertos contactados consideran el modelo fácil de leer (media de 1.89_0.79 siendo 1 el valor más favorable y 5 el peor), suficientemente abstracto (1.99_0.88) y formal (2.13_0.77), con una cobertura suficiente del dominio (2.26_0.95), útil para describir el dominio (2.02_0.7) y para generar sistemas más específicos (2_0.75). Los expertos también reportan un interés parcial en utilizar el modelo en su trabajo (2.48_0.91). Gracias a sus comentarios, el modelo fue mejorado y enriquecido con conceptos que faltaban, aunque no se pudo demonstrar su mejora en las dimensiones evaluadas, dada la composición diferente de personas en las tres rondas de evaluación. Desde el modelo, se generó una plataforma de desarrollo llamada \pHealth Patient Platform (pHPP)". La plataforma desarrollada incluye librerías, herramientas de programación y desarrollo, un tutorial y una aplicación de ejemplo. Se definieron cuatro módulos principales de la arquitectura: el Data Collection Engine, que permite abstraer las fuentes de datos como sensores o servicios externos, mapeando los datos a bases de datos u ontologías, y permitiendo interacción basada en eventos; el GUI Engine, que abstrae la interfaz de usuario en un modelo de interacción basado en mensajes; y el Rule Engine, que proporciona a los desarrolladores un medio simple para programar la lógica de la aplicación en forma de reglas \if-then". Después de que la plataforma pHPP fue utilizada durante 5 años en el proyecto HeartCycle, 5 desarrolladores fueron reunidos en un grupo de discusión para analizar y evaluar la plataforma. De estas evaluaciones se concluye que la plataforma fue diseñada para encajar las necesidades de los ingenieros que trabajan en la rama, permitiendo la separación de problemas entre las distintas especialidades, y simplificando algunas tareas de desarrollo como el manejo de datos y la interacción asíncrona. A pesar de ello, se encontraron algunos defectos a causa de la inmadurez de algunas tecnologías empleadas, y la ausencia de algunas herramientas específicas para el dominio como el procesado de datos o algunos protocolos de comunicación relacionados con la salud. Dentro del proyecto HeartCycle la plataforma fue utilizada para el desarrollo de la aplicación \Guided Exercise", un sistema TIC para la rehabilitación de pacientes que han sufrido un infarto del miocardio. El sistema fue testeado en un ensayo clínico randomizado en el cual a 55 pacientes se les dio el sistema para su uso por 21 semanas. De los resultados técnicos del ensayo se puede concluir que, a pesar de algunos errores menores prontamente corregidos durante el estudio, la plataforma es estable y fiable. Conclusiones La investigación llevada a cabo en esta Tesis y los resultados obtenidos proporcionan las respuestas a las tres preguntas de investigación que motivaron este trabajo: RQ1 Se ha desarrollado un modelo para representar el dominio de los sistemas personalizados de salud. La evaluación hecha por los expertos de la rama concluye que el modelo representa el dominio con precisión y con un balance apropiado entre abstracción y detalle. RQ2 Se ha desarrollado, con éxito, una plataforma de desarrollo basada en el modelo. RQ3 Se ha demostrado que la plataforma es capaz de ayudar a los desarrolladores en la creación de software pHealth complejos. Las ventajas de la plataforma han sido demostradas en el ámbito de un proyecto de gran escala, aunque el enfoque genérico adoptado indica que la plataforma podría ofrecer beneficios también en otros contextos. Los resultados de estas evaluaciones ofrecen indicios de que, ambos, el modelo y la plataforma serán buenos candidatos para poderse convertir en una referencia para futuros desarrollos de sistemas pHealth. ABSTRACT Background Europe is living in an unsustainable situation. The economic crisis has been reducing governments' economic resources since 2008 and threatening social and health systems, while the proportion of older people in the European population continues to increase so that it is foreseen that in 2050 there will be only two workers per retiree [54]. To this situation it should be added the rise, strongly related to age, of chronic diseases the burden of which has been estimated to be up to the 7% of a country's gross domestic product [51]. There is a need for a paradigm shift, the need for a new way of caring for people's health, shifting the focus from curing conditions that have arisen to a sustainable and effective approach with the emphasis on prevention. Some advocate the adoption of personalised health care (pHealth), a model where medical practices are tailored to the patient's unique life, from the detection of risk factors to the customization of treatments based on each individual's response [81]. Personalised health is often associated to the use of Information and Communications Technology (ICT), that, with its exponential development, offers interesting opportunities for improving healthcare. The shift towards pHealth is slowly taking place, both in research and in industry, but the change is not significant yet. Many barriers still exist related to economy, politics and culture, while others are purely technological, like the lack of interoperable information systems [199]. Though interoperability aspects are evolving, there is still the need of a reference design, especially tackling implementation and large scale deployment of pHealth systems. This thesis contributes to organizing the subject of ICT systems for personalised health into a reference model that allows for the creation of software development platforms to ease common development issues in the domain. Research questions RQ1 Is it possible to define a model, based on software engineering techniques, for representing the personalised health domain in an abstract and representative way? RQ2 Is it possible to build a development platform based on this model? RQ3 Does the development platform help developers create complex integrated pHealth systems? Methods As method for describing the model, the ISO/IEC/IEEE 42010 framework [25] is adopted for its generality and high level of abstraction. The model is specified in different parts: a conceptual model, which makes use of concept maps, for representing stakeholders, artefacts and shared information, and in scenarios and use cases for the representation of the functionalities of pHealth systems. The model was derived from literature analysis, including 7 industrial and scientific reports, 9 electronic standards, 10 conference proceedings papers, 37 journal papers, 25 websites and 5 books. Based on the reference model, requirements were drawn for building the development platform enriched with a set of requirements gathered in a survey run among 11 experienced engineers. For developing the platform, the continuous integration methodology [74] was adopted which allowed to perform automatic tests on a server and also to deploy packaged releases on a web site. As a validation methodology, a theory building framework for SW engineering was adopted from [181]. The framework, chosen as a guide to find evidence for justifying the research questions, imposed the creation of theories based on models and propositions to be validated within a scope. The validation of the model was conducted as an on-line survey in three validation rounds, encompassing a growing number of participants. The survey was submitted to 134 experts of the field and on some public channels like relevant mailing lists and social networks. Its objective was to assess the model's readability, its level of coverage of the domain and its potential usefulness in the design of actual, derived systems. The questionnaires included quantitative Likert scale questions and free text inputs for comments. The development platform was validated in two scopes. As a small-scale experiment, the platform was used in a 12 hours training session where 4 developers had to perform an exercise consisting in developing a set of typical pHealth use cases At the end of the session, a focus group was held to identify benefits and drawbacks of the platform. The second validation was held as a test-case study in a large scale research project called HeartCycle the aim of which was to develop a closed-loop disease management system for heart failure and coronary heart disease patients [160]. During this project three applications were developed by a team of programmers and designers. One of these applications was tested in a clinical trial with actual patients. At the end of the project, the team was interviewed in a focus group to assess the role the platform had within the project. Results For what regards the model that describes the pHealth domain, its conceptual part includes a description of the main roles and concerns of pHealth stakeholders, a model of the ICT artefacts that are commonly adopted and a model representing the typical data that need to be formalized among pHealth systems. The functional model includes a set of 18 scenarios, divided into assisted person's view, caregiver's view, developer's view, technology and services providers' view and authority's view, and a set of 52 Use Cases grouped in 6 categories: assisted person's activities, system reactions, caregiver's activities, user engagement, developer's activities and deployer's activities. For what concerns the validation of the model, a total of 65 people participated in the online survey providing their level of agreement in all the assessed dimensions and a total of 248 comments on how to improve and complete the model. Participants' background spanned from engineering and software development (70%) to medical specialities (15%), with declared interest in the fields of eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), Personalized Medicine (5%), Personal Health Systems (15%), Medical Informatics (10%) and Biomedical Engineering (8%) with an average of 7.25_4.99 years of experience in these fields. From the analysis of the answers it is possible to observe that the contacted experts considered the model easily readable (average of 1.89_0.79 being 1 the most favourable scoring and 5 the worst), sufficiently abstract (1.99_0.88) and formal (2.13_0.77) for its purpose, with a sufficient coverage of the domain (2.26_0.95), useful for describing the domain (2.02_0.7) and for generating more specific systems (2_0.75) and they reported a partial interest in using the model in their job (2.48_0.91). Thanks to their comments, the model was improved and enriched with concepts that were missing at the beginning, nonetheless it was not possible to prove an improvement among the iterations, due to the diversity of the participants in the three rounds. From the model, a development platform for the pHealth domain was generated called pHealth Patient Platform (pHPP). The platform includes a set of libraries, programming and deployment tools, a tutorial and a sample application. The main four modules of the architecture are: the Data Collection Engine, which allows abstracting sources of information like sensors or external services, mapping data to databases and ontologies, and allowing event-based interaction and filtering, the GUI Engine, which abstracts the user interface in a message-like interaction model, the Workow Engine, which allows programming the application's user interaction ows with graphical workows, and the Rule Engine, which gives developers a simple means for programming the application's logic in the form of \if-then" rules. After the 5 years experience of HeartCycle, partially programmed with pHPP, 5 developers were joined in a focus group to discuss the advantages and drawbacks of the platform. The view that emerged from the training course and the focus group was that the platform is well-suited to the needs of the engineers working in the field, it allowed the separation of concerns among the different specialities and it simplified some common development tasks like data management and asynchronous interaction. Nevertheless, some deficiencies were pointed out in terms of a lack of maturity of some technological choices, and for the absence of some domain-specific tools, e.g. for data processing or for health-related communication protocols. Within HeartCycle, the platform was used to develop part of the Guided Exercise system, a composition of ICT tools for the physical rehabilitation of patients who suffered from myocardial infarction. The system developed using the platform was tested in a randomized controlled clinical trial, in which 55 patients used the system for 21 weeks. The technical results of this trial showed that the system was stable and reliable. Some minor bugs were detected, but these were promptly corrected using the platform. This shows that the platform, as well as facilitating the development task, can be successfully used to produce reliable software. Conclusions The research work carried out in developing this thesis provides responses to the three three research questions that were the motivation for the work. RQ1 A model was developed representing the domain of personalised health systems, and the assessment of experts in the field was that it represents the domain accurately, with an appropriate balance between abstraction and detail. RQ2 A development platform based on the model was successfully developed. RQ3 The platform has been shown to assist developers create complex pHealth software. This was demonstrated within the scope of one large-scale project, but the generic approach adopted provides indications that it would offer benefits more widely. The results of these evaluations provide indications that both the model and the platform are good candidates for being a reference for future pHealth developments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovation studies have been interest of not only the scholars from various fields such as economics, management and sociology but also industrial practitioners and policy makers. In this vast and fruitful field, the theory of diffusion of innovations, which has been driven by a sociological approach, has played a vital role in our understanding of the mechanisms behind industrial change. In this paper, our aim is to give a state of art review of diffusion of innovation models in a structural and conceptual way with special reference to photovoltaic. We argue firstly, as an underlying background, how diffusion of innovations theory differs from other innovation studies. Secondly we give a brief taxonomical review of modelling methodologies together with comparative discussions. And finally we put the wealth of modelling in the context of photovoltaic diffusion and suggest some future directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer/inorganic nanoparticle nanocomposites have garnered considerable academic and industrial interest over recent decades in the development of advanced materials for a wide range of applications. In this respect, the dispersion of so-called inorganic fullerene-like (IF) nanoparticles, e.g., tungsten disulfide (IF-WS2) or molybdenum disulfide (IF-MoS2), into polymeric matrices is emerging as a new strategy. The surprising properties of these layered metal dichalcogenides such as high impact resistance and superior tribological behavior, attributed to their nanoscale size and hollow quasi-spherical shape, open up a wide variety of opportunities for applications of these inorganic compounds. The present work presents a detailed overview on research in the area of IF-based polymer nanocomposites, with special emphasis on the use of IF-WS2 nanoparticles as environmentally friendly reinforcing fillers. The incorporation of IF particles has been shown to be efficient for improving thermal, mechanical and tribological properties of various thermoplastic polymers, such as polypropylene, nylon-6, poly(phenylene sulfide), poly(ether ether ketone), where nanocomposites were fabricated by simple melt-processing routes without the need for modifiers or surfactants. This new family of nanocomposites exhibits similar or enhanced performance when compared with nanocomposites that incorporate carbon nanotubes, carbon nanofibers or nanoclays, but are substantially more cost-effective, efficient and environmentally satisfactory. Most recently, innovative approaches have been described that exploit synergistic effects to produce new materials with enhanced properties, including the combined use of micro- and nanoparticles such as IF-WS2/nucleating agent or IF-WS2/carbon fiber, as well as dual nanoparticle systems such as SWCNT/IF-WS2 where each nanoparticle has different characteristics. The structure–property relationships of these nanocomposites are discussed and potential applications proposed ranging from medicine to the aerospace, automotive and electronics industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we apply a hierarchical tracking strategy of planar objects (or that can be assumed to be planar) that is based on direct methods for vision-based applications on-board UAVs. The use of this tracking strategy allows to achieve the tasks at real-time frame rates and to overcome problems posed by the challenging conditions of the tasks: e.g. constant vibrations, fast 3D changes, or limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations in which part of the object to track is outside of the field of view of the camera. The performance of the proposed tracking strategy on-board UAVs is evaluated with images from realflight tests using manually-generated ground truth information, accurate position estimation using a Vicon system, and also with simulated data from a simulation environment. Results show that the hierarchical tracking strategy performs better than wellknown feature-based algorithms and well-known configurations of direct methods, and that its performance is robust enough for vision-in-the-loop tasks, e.g. for vision-based landing tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several boost-derived topologies are analyzed and compared for an aerospace application that uses a 100 V voltage bus. All these topologies have been designed and optimized considering the electrical requirements and the reduced number of space-qualified components. The comparison evaluates the power losses, mass, and dynamic response. Special attention has been paid to those topologies that may cancel the inherent right half plane zero (RHP) zero of the boost topology. Experimental results of the less common topologies are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A spatial-color-based non-parametric background-foreground modeling strategy in a GPGPU by using CUDA is proposed. This strategy is suitable for augmented-reality applications, providing real-time high-quality results in a great variety of scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last generation of consumer electronic devices is endowed with Augmented Reality (AR) tools. These tools require moving object detection strategies, which should be fast and efficient, to carry out higher level object analysis tasks. We propose a lightweight spatio-temporal-based non-parametric background-foreground modeling strategy in a General Purpose Graphics Processing Unit (GPGPU), which provides real-time high-quality results in a great variety of scenarios and is suitable for AR applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the radio signal transmission characteristics in the environment where the telerobotic application is sought is a key part of achieving a reliable wireless communication link between a telerobot and a control station. In this paper, wireless communication requirements and a case study of a typical telerobotic application in an underground facility at CERN are presented. Then, the theoretical and experimental characteristics of radio propagation are investigated with respect to time, distance, location and surrounding objects. Based on analysis of the experimental findings, we show how a commercial wireless system, such as Wi-Fi, can be made suitable for a case study application at CERN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a low cost and complexity indoor location and navigation system using visible light communications and a mobile device. LED lamps work as beacons transmitting an identifier code so a mobile device can know its location. Experimental designs for transmitter and receiver interfaces are presented and potential applications are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the decade of the 1980’s the literature on economic development began paying attention to the cases of countries which were industrialized after the first industrial revolution. One of the most relevant aspects analyzed has been the role of technology as a factor which promotes or delays the process of catching up with technology leaders. As result of this interest, new and more adequate indicators were identified to provide a coherent explanation for technological activities and their relationship with economic efficiency. Although the earliest studies focused on analyzing the activities of research and development (R&D), recently the focus of analysis has shifted to another type of variables, more oriented towards the processes of innovation and the gathering of knowledge and capabilities, in which patents provide relevant information.