909 resultados para Polymeric lightweight concrete
Resumo:
Lanthanum-modified bismuth titanate, Bi4 - xLaxTi3O12 (BLT) ceramics, with x ranging from 0 to 0.75 were prepared by the polymeric precursor method. Orthorhombicity of the system is decreased with the increase of lanthanum content in the bismuth titanate (BIT) crystal lattice. No secondary phases were evident after lanthanum addition. Increasing lanthanum content causes a structural distortion in the bismuth titanate lattice. The shape of the grains is strongly influenced by the lanthanum added to the system. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Nowadays, many investments have been made in the area of superconductor materials, with the aim to improve their potential technological applications. Applications on the energy transport using cables, to get high resolution images in the medicine use high magnetic fields, high speed signals use superconductor devices all of them are in crescent evidence and they are showing that the future is coming and next for this new kind of materials. Obviously that everything of this is possible due to the increasing of research with new materials, where the synthesis, characterization and applications are of the mainly objective of these researches. The production of cable for the energy transport has been in advanced stage as the bulks production is too. However, the film production that to aim at the electronic devices area is not as developed or it still need expensive investments. Thinking about that, we are developing a research where we may increase the relation of cost/benefits. Thereby, we are applying the polymeric precursors method to obtain films that will be used in the built of electronic devices. Thin films (mono and multilayers, on crystalline or metallic substrates, controlled thickness) of the BSCCO system have been obtained from dip coating deposition process with excellent results in terms of preferential orientation, controlled thickness, a large area, which may indicate future applications. Based on these results, we present an electrical circuit and their principal characteristics as superconductor transition (85K), transport current density and structure. DC four probes method, scanning electron microscopy, digital optical microscopy and X-ray diffractometry were some techniques used for the characterization of this superconductor electric device. © 2006 Materials Research Society.
Resumo:
The purpose of this paper is to study the mechanical behavior of concrete blocks and prisms when performing axial compression tests within the Brazilian base of knowledge, intending to foment data of this kind for a world-based network. The blocks were built using five different mixtures in which the quantity of cement and the compacting ratio (density) were varied (during the fabrication process). The three-course-high prisms were assembled using 1 cm (0.39 in.) thick full-bedded joints, always trying to leave the mortar's characteristics constant. The axial compression tests were conducted according to Brazilian practice code recommendations, because most of these standards are very similar to international practice codes. The compressive strength, strains, and rupture form of each mixture studied were recorded. Attempts were made to correlate the strength, efficiency ratio (block strength/prism strength) of the prisms, strains, and rupture form; with the quantity of cement and compacting ratio. The data are presented in tables and figures, and the obtained results are discussed throughout the text. Copyright © 2007, American Concrete Institute. All rights reserved.
Resumo:
This paper discusses the preparation and characterization of Zn 0.95Mn0.05O phase obtained by the polymeric precursor method for DMS applications. The as-obtained powders were calcined between 500 to 800°C and characterized by XRD, SEM and BET. The XRD analysis of the powder showed a crystalline material containing second phase. The crystallite sizes ranged from 20 to 51 nm. The micrographs showed that the powders consisted of soft and homogeneous agglomerations. The nitrogen adsorption/desorption curves of the Zn0.95Mn0.05O phases were type II curves, which is characteristic of mesoporous materials.
Resumo:
This work reports on the pure lithium tantalate (LiTaO3), europium (III)-doped LiTaO3 and magnesium (II)-europium (III)-doped LiTaO3 preparared by the polymeric precursor method, using four different powered samples of Eu3+ ion concentrations 0.1 to 1at %. Structural and optical properties of powders have been studied. The different possible sites occupied by the rare earth were examined. The phase contents and lattice parameters were studied by the Rietveld method and the structural disorder in the LiTaO3 host caused by Eu3+ ions was analyzed. Results indicated LiTaO3 free of secondary phases at 650°C and the photoluminescence (PL) emission spectra showed the characteristic sharp emission bands given by Eu3+ ions when they are excited at a wavelength of 399 nm. An increase of dopants contents caused a non-homogeneous broadening and showed a slightly larger one when Mg was added. A displacement of the transition 5D0-7F0 to shorter wavelengths as function of Eu3+ concentration was also noticed.
Resumo:
Software Transactional Memory (STM) systems have poor performance under high contention scenarios. Since many transactions compete for the same data, most of them are aborted, wasting processor runtime. Contention management policies are typically used to avoid that, but they are passive approaches as they wait for an abort to happen so they can take action. More proactive approaches have emerged, trying to predict when a transaction is likely to abort so its execution can be delayed. Such techniques are limited, as they do not replace the doomed transaction by another or, when they do, they rely on the operating system for that, having little or no control on which transaction should run. In this paper we propose LUTS, a Lightweight User-Level Transaction Scheduler, which is based on an execution context record mechanism. Unlike other techniques, LUTS provides the means for selecting another transaction to run in parallel, thus improving system throughput. Moreover, it avoids most of the issues caused by pseudo parallelism, as it only launches as many system-level threads as the number of available processor cores. We discuss LUTS design and present three conflict-avoidance heuristics built around LUTS scheduling capabilities. Experimental results, conducted with STMBench7 and STAMP benchmark suites, show LUTS efficiency when running high contention applications and how conflict-avoidance heuristics can improve STM performance even more. In fact, our transaction scheduling techniques are capable of improving program performance even in overloaded scenarios. © 2011 Springer-Verlag.
Resumo:
The texture of concrete blocks is very important and is often the decisive factor when choosing a product, particularly if the building specifications call for high-strength blocks allied to low-cost finish, in which case exposed blocks with a closer texture are often preferred. Furthermore, a closer texture, especially for exteriors, may be a vital factor in ensuring the building's durability. At present, however, there is no standard to quantify the texture of a structural block. Further, when studying masonry blocks compressive strength should never be overlooked. This article discusses a procedure to produce concrete block textures with and without the addition of lime, but still to achieve the required compressive strength. The method used in this study, to evaluate texture, proved to be simpler and cheaper than methods reported by other authors in the literature. The addition of small quantities of lime proved beneficial for both texture and compressive strength. Increasing the amount of lime further, however, only improved texture.
Resumo:
The texture of concrete blocks is very important and is often the decisive factor when choosing a product, particularly if the building specifications does not dispense with the high resistance of the blocks, but has the purpose of reducing costs with finishing, therefore preferring exposed blocks with a closer texture. Furthermore, a closer texture, especially for exteriors,may be the vital factor of the building's pathology.However, there is so far no standard to quantify the texture of a structural block. This article proposes to apply the freely available UTHSCSA-Image ToolTM program developed by the University of Texas Health Science Center at San Antonio to evaluate the texture of masonry blocks. One aspect that should never be overlooked when studying masonry blocks is compressive strength. Therefore, this work also gets the compressive strength of the blocks with and without the addition of lime. The addition of small quantities of lime proved beneficial for both texture and compressive strength. However, increasing the amount of lime proved to be feasible only to improve texture. © 2012 Taylor & Francis Group.
Resumo:
For intricate automotive systems that enclose several components, such as gearboxes, an important aspect of the design is defining the correct assembly parameters. A proper assembly can ensure optimized operating conditions and therefore the components can achieve a longer life. In the case of the support bearings applied to front-axle lightweight differentials, the assembly preload is a major aspect for an adequate performance of the system. During the design phase it is imperative to define reference values to this preload, so the application would endure its requirements. However, with the assistance of computer simulations, it is possible to determine an optimum condition of operation, i.e. optimum pre-load, which would increase the system reliability. This paper presents a study on the influence of preload on the rating life of tapered roller bearings applied to light-weight front axle differentials, evaluating how preload affects several key parameters such as rating life and displacement of components, taking into account the flexibility of the surrounding differential housing. Copyright © 2012 SAE International.
Resumo:
This paper presents an experimental research on the use of eddy current testing (ECT) and artificial neural networks (ANNs) in order to identify the gauge and position of steel bars immersed in concrete structures. The paper presents details of the ECT probe and concrete specimens constructed for the tests, and a study about the influence of the concrete on the values of measured voltages. After this, new measurements were done with a greater number of specimens, simulating a field condition and the results were used to generate training and validation vectors for multilayer perceptron ANNs. The results show a high percentage of correct identification with respect to both, the gauge of the bar and of the thickness of the concrete cover. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Strontium stannate titanate Sr(Sn, Ti)O3 is a solid solution between strontium stannate (SrSnO3) and strontium titanate (SrTiO3). In the present study, it was synthesized at low temperature by the polymeric precursor method, derived from the Pechini process. The powders were calcined in oxygen atmosphere in order to eliminate organic matter and to decrease the amount of SrCO3 formed during the synthesis. The powders were annealed at different temperatures to crystallize the samples into perovskites-type structures. All the compositions were studied by thermogravimetry (TG) and differential thermal analysis (DTA), infrared spectroscopy (IR) and X-ray diffraction (XRD). The lattice former, Ti4+ and Sn4+, had a meaningful influence in the mass loss, without changing the profile of the TG curves. On the other hand, DTA curves were strongly modified with the Ti4+:Sn4+ proportion in the system indicating that intermediate compounds may be formed during the synthesis being eliminated at different temperature ranges, while SrCO3 elimination occurs at higher temperature as shown by XRD and IR spectra. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu3+ ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu3+ ions. The 29Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO2)3] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid samples were excited at 337 nm wavelength, the ligand absorbs the excitation light. Part of this energy is transferred to the Eu3+ ion, which main emission, 5D0→ 7F2, is observed in the emission spectrum at 612 nm. As the heating temperature increases to 300 C, the energy transfer is more favorable. The lifetime values showed that the Eu3+ emission is enhanced due to the energy transfer process in the powders. © 2013 Elsevier B.V. All rights reserved.
Resumo:
A polymeric complex [Eu(α-tpc)3(α-Htpc) 2]n and its characterization by single crystal X-ray and thermal analysis, infrared and photoluminescence spectroscopies are described. The compound crystallizes in the monoclinic Cc space group. The asymmetric unit is formed from a europium ion bonded to one carboxyl oxygen of five different thiophene carboxylic moieties. Three of these moieties are deprotonated and bridge between neighboring europium ions giving rise to an infinite polymer along the c axis. Besides the europium characteristic emission lines, the emission spectra show unambiguously the crystal size effect on the 5D0 → 7F0 transition. The complex thermal decomposition at 220 C leads to a stable luminescent complex in which the 5D0 → 7F4 transition reveals a monomeric characteristic. The Judd-Ofelt intensity parameters to the polymeric and the monomeric compound with the same ligand and coordination number were compared. © 2013 Published by Elsevier Ltd.
Resumo:
Includes bibliography
Resumo:
A área de pesquisa em patologia das construções vem crescendo muito ultimamente, devido à degradação natural observada nos mais diversos tipos de edificações. Neste sentido, grande atenção vem sendo dispendida às estruturas de concreto de obras especiais como usinas hidrelétricas (UHEs) em virtude de sua complexidade e importância, tanto social quanto econômica. Uma das patologias que mais ocorrem nestas estruturas é a abrasão hidráulica do concreto, a qual pode levar a construção à ruína, em casos extremos. Este trabalho visa obter e analisar dados de vários materiais de reparo quanto à resistência à abrasão hidráulica e quanto aos seus respectivos sistemas de aderência. Dividiu-se a pesquisa em três grandes etapas: na primeira verificaria as características físicas e mecânicas dos materiais de reparo, a segunda analisaria a compatibilidade entre reparo e substrato através da aderência obtida no ensaio de compressão na junta diagonal e a terceira forneceria dados sobre a resistência à abrasão dos reparos através do ensaio ASTM C1138. Na primeira etapa foram realizados os ensaios de resistência à compressão axial e consistência dos concretos e argamassas utilizados como reparos profundos e superficiais para as idades de 3, 7 e 28 dias; Na segunda, aos 3 e 28 dias de idade, foram realizados os ensaios de aderência dos sistemas adesivos, abrangendo materiais cimentícios e à base de polímeros; Na última etapa foram utilizados os mesmos materiais de reparo da primeira: argamassas e concretos à base de cimento com e sem adição de pozolanas sílica ativa e metacaulim e argamassa à base de resina epóxi aos 3 e 28 dias. Como resultados, foram obtidas resistências à compressão axial entre 40 e 65 MPa para os materiais cimentícios aos 3 dias de idade e entre 60 e 80 MPa aos 28 dias, enquanto que para a argamassa epóxi a resistência foi de 20 MPa para ambas as idades. A consistência das argamassas foi tixotrópica, enquanto que a dos concretos foi bastante fluida. Quanto à aderência, realizou-se a aplicação dos adesivos em superfícies escarificadas, limpas e encharcadas, o que possibilitou uma expressiva vantagem dos adesivos à base de cimento e relação aos poliméricos, mesmo estes sendo indicados para colagem em substratos úmidos. Na etapa de abrasão dos reparos, utilizou-se uma nova metodologia de preparo dos substratos de concreto e posterior aplicação dos reparos, classificados em profundos ou superficiais. O reparo que apresentou maior resistência à abrasão foi o de argamassa epóxi. Não houve diferença estatística significativa entre os concretos sem adição e com adição de sílica ativa e metacaulim de alta reatividade. Em geral, o desgaste das argamassas, especialmente aos 3 dias, foi maior que o dos concretos, onde se verificou claramente a presença de dois estágios de taxa de desgaste em função da resistência à abrasão dos agregados graúdos. Assim, foi possível identificar diferentes estágios de desgaste para os concretos utilizados.