903 resultados para Polymer-Ceramic Composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A correlation has been established between the heat of depolymerization (DeltaH) of vinyl polymers for going from solid polymer state to gaseous monomer state and the activation energy (E) of degradation. On this basis it has been shown that the rate controlling step in the degradation lies in the initiation step. Attempt has been made to correlate theE and DeltaH with glass transition temperature (Tg) and melting temperature (Tm) of the polymers.[/ p]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical utility of biodegradable magnesium implants is undermined by the untimely degradation of these materials in vivo. Their high corrosion rate leads to loss of mechanical integrity, peri–implant alkalization and localised accumulation of hydrogen gas. Biodegradable coatings were produced on pure magnesium using RF plasma polymerisation. A monoterpene alcohol with known anti-inflammatory and antibacterial properties was used as a polymer precursor. The addition of the polymeric layer was found to reduce the degradation rate of magnesium in simulated body fluid. The in vitro studies indicated good cytocompatibility of non-adherent THP–1 cells and mouse macrophage cells with the polymer, and the polymer coated sample. The viability of THP–1 cells was significantly improved when in contact with polymer encapsulated magnesium compared to unmodified samples. Collectively, these results suggest plasma enhanced polymer encapsulation of magnesium as a suitable method to control degradation kinetics of this biomaterial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show simultaneous p- and n-type carrier injection in a bilayer graphene channel by varying the longitudinal bias across the channel and the top-gate voltage. The top gate is applied electrochemically using solid polymer electrolyte and the gate capacitance is measured to be 1.5 microF cm(-2), a value about 125 times higher than the conventional SiO(2) back-gate capacitance. Unlike the single-layer graphene, the drain-source current does not saturate on varying the drain-source bias voltage. The energy gap opened between the valence and conduction bands using top- and back-gate geometry is estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of fire retardant action of mono- and diammonium phosphates on polystyrene has been investigated. Ignition delay and mass burning rate studies reveal that the phosphates bring down both parameters considerably though to different extents. This has been adequately explained on the basis of the existing combustion models and physicochemical behavior of the material. Similar to their action on cellulosic materials, phosphates bring about fire retardancy in polystyrene via char formation. This is suggested to occur through a series of processes consisting of initial peroxide formation, decomposition to alcohols and aldehydes, formation of alkyl-phosphate esters, dehydration and subsequent char formation. Infrared and mass spectral studies support this mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only similar to 20% of total anthocyanins to similar to 30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial nonspecific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spreadability of SAE-30 oil on Al-12 Si base (LM-13) alloy containing dispersed graphite particles about 50 μm average size in its matrix is found to be greater than on either LM-13 with no graphite or brass. It is also found that the spreadability on LM-13 base alloys increase with increasing volume of graphite dispersion in the matrix of these alloys. Further increases in the spreadability of oil on machined LM-13-graphite particle composite test surfaces occur if these are rubbed initially against control discs of either LM-13 or grey cast iron. The formation of a triboinduced graphite-rich layer, confirmed by esca, appears to be responsible for the improved oil spreadability on the rubbed test surfaces of LM-13 base alloys as compared to the as-machined test surfaces prior to rubbing. The triboinduced layer of graphite is apparently responsible for the observed reduction in the friction, wear and seizing tendency of triboelements made from aluminium alloy-graphite particle composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donor doped BaTiO3 ceramics become insulating5 under controlled conditions with effective dielectric constants >10. The changes in EPR signals indicate that a certain fraction of the donor doped BaTiO3 is cubic even at room temperature and that the cubic fraction increases with the donor content. X-ray powder diffraction data support the EPR results. The coexistence of both the phases over a range of temperature is characteristic of diffused phase transition. The effect of grain size variation on EPR signal intensities indicate that the boundary layers surrounding the grains may constitute the cubic phase as a result of higher Ba-vacancies and donor contents at the grain boundary layer than in the bulk. Since the acceptor states arising from the Ba-vacancies and the impurities are activated in the cubic phase, they capture electrons from the conduction band, rendering the cubic phase electrically more insulating than the semiconductive tetragonal grain interiors. Thus, the cubic grain boundary layers act as effective dielectric media where the field tends to concentrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the dielectric behavior of an insulator-conductor composite, namely, the wax-graphite composite. The variation of specific capacitance of these composites with parameters such as volume fraction and grain size of the conducting particles and temperature has been studied. These observed variations have been explained using the same model [C. Rajagopal and M. Satyam, J. Appl. Phys. 49, 5536 (1978)] which explains electrical conduction in composites. The specific capacitance of these materials appears to be governed by the contact capacitance between the conducting particles and the number of contacts each particle has with its neighbors. The variation of specific capacitance with temperature is attributed to the change in contact area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(II) complexes of quaternised poly(4-vinylpyridine) (PVP) of different degrees of quaternisation and copper content have been prepared by crosslinking the polymer with 1,2-dibromoethane in the presence of Cu2+ ion as template. The stability constant of the PVP---Cu(II) complexes is found to increase with the degree of crosslinking quaternisation of the resin, but the rate at which Cu2+ is adsorbed by the resin decreases. An optimum combination of both stability and rate can be achieved with a moderate degree (31%) of crosslinking. A kinetic study reveals that quaternisation increases significantly the catalytic activity of the complex for the oxidation of S2O2−3 by O2 compared with PVP----Cu(II) without quaternisation, but it deactivates the complex for the oxidation of both S3O2−6 and S4O2−6. The batch reactor oxidation kinetics at pH 2.16, where the rate is observed to be maximum, is well explained by the Langmuir—Hinshelwood model assuming the coordination of both O2 and thioanion to Cu(II) as a precursor to the oxidation reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer protected gold nanoparticles have successfully been synthesized by both "grafting-from" and "grafting-to" techniques. The synthesis methods of the gold particles were systematically studied. Two chemically different homopolymers were used to protect gold particles: thermo-responsive poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PS. Both polymers were synthesized by using a controlled/living radical polymerization process, reversible addition-fragmentation chain transfer (RAFT) polymerization, to obtain monodisperse polymers of various molar masses and carrying dithiobenzoate end groups. Hence, particles protected either with PNIPAM, PNIPAM-AuNPs, or with a mixture of two polymers, PNIPAM/PS-AuNPs (i.e., amphiphilic gold nanoparticles), were prepared. The particles contain monodisperse polymer shells, though the cores are somewhat polydisperse. Aqueous PNIPAM-AuNPs prepared using a "grafting-from" technique, show thermo-responsive properties derived from the tethered PNIPAM chains. For PNIPAM-AuNPs prepared using a "grafting-to" technique, two-phase transitions of PNIPAM were observed in the microcalorimetric studies of the aqueous solutions. The first transition with a sharp and narrow endothermic peak occurs at lower temperature, and the second one with a broader peak at higher temperature. In the first transition PNIPAM segments show much higher cooperativity than in the second one. The observations are tentatively rationalized by assuming that the PNIPAM brush can be subdivided into two zones, an inner and an outer one. In the inner zone, the PNIPAM segments are close to the gold surface, densely packed, less hydrated, and undergo the first transition. In the outer zone, on the other hand, the PNIPAM segments are looser and more hydrated, adopt a restricted random coil conformation, and show a phase transition, which is dependent on both particle concentration and the chemical nature of the end groups of the PNIPAM chains. Monolayers of the amphiphilic gold nanoparticles at the air-water interface show several characteristic regions upon compression in a Langmuir trough at room temperature. These can be attributed to the polymer conformational transitions from a pancake to a brush. Also, the compression isotherms show temperature dependence due to the thermo-responsive properties of the tethered PNIPAM chains. The films were successfully deposited on substrates by Langmuir-Blodgett technique. The sessile drop contact angle measurements conducted on both sides of the monolayer deposited at room temperature reveal two slightly different contact angles, that may indicate phase separation between the tethered PNIPAM and PS chains on the gold core. The optical properties of amphiphilic gold nanoparticles were studied both in situ at the air-water interface and on the deposited films. The in situ SPR band of the monolayer shows a blue shift with compression, while a red shift with the deposition cycle occurs in the deposited films. The blue shift is compression-induced and closely related to the conformational change of the tethered PNIPAM chains, which may cause a decrease in the polarity of the local environment of the gold cores. The red shift in the deposited films is due to a weak interparticle coupling between adjacent particles. Temperature effects on the SPR band in both cases were also investigated. In the in situ case, at a constant surface pressure, an increase in temperature leads to a red shift in the SPR, likely due to the shrinking of the tethered PNIPAM chains, as well as to a slight decrease of the distance between the adjacent particles resulting in an increase in the interparticle coupling. However, in the case of the deposited films, the SPR band red-shifts with the deposition cycles more at a high temperature than at a low temperature. This is because the compressibility of the polymer coated gold nanoparticles at a high temperature leads to a smaller interparticle distance, resulting in an increase of the interparticle coupling in the deposited multilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small signal ac response is measured across the source-drain terminals of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) field-effect transistor under dc bias to obtain the equivalent circuit parameters in the dark, and under a monochromatic light (540 nm) of various intensities. The numerically simulated response based on these parameters shows deviation at low frequency which is related to the charge accumulation at the interface and the contact resistance at the electrodes. This method can be used to differentiate the photophysical phenomena occurring in the bulk from that at the metal-semiconductor interface for polymer field-effect transistors. ©2009 American Institute of Physics