941 resultados para Poa alpina, transplantation, altitudinal gradient, genetic diversity, phenotypic plasticity
Resumo:
Aquatic plants of the genus Ruppia inhabit some of the most threatened habitats in the world, such as coastal lagoons and inland saline to brackish waters where their meadows play several key roles. The evolutionary history of this genus has been affected by the processes of hybridization, polyploidization, and vicariance, which have resulted in uncertainty regarding the number of species. In the present study, we apply microsatellite markers for the identification, genetic characterization, and detection of hybridization events among populations of putative Ruppia species found in the southern Iberian Peninsula, with the exception of a clearly distinct species, the diploid Ruppia maritima. Microsatellite markers group the populations into genetically distinct entities that are not coincident with geographical location and contain unique diagnostic alleles. These results support the interpretation of these entities as distinct species: designated here as (1) Ruppia drepanensis, (2) Ruppia cf. maritima, and (3) Ruppia cirrhosa. A fourth distinct genetic entity was identified as a putative hybrid between R. cf. maritima and R. cirrhosa because it contained a mixture of microsatellite alleles that are otherwise unique to these putative species. Hence, our analyses were able to discriminate among different genetic entities of Ruppia and, by adding multilocus nuclear markers, we confirm hybridization as an important process of speciation within the genus. In addition, careful taxonomic curation of the samples enabled us to determine the genotypic and genetic diversity and differentiation among populations of each putative Ruppia species. This will be important for identifying diversity hotspots and evaluating patterns of population genetic connectivity. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
Resumo:
We studied the genetic structure of the sea cucumber Holothuria (Roweothuria) polii (Delle Chiaje 1823) by analysing the mitochondrial DNA variation in two fragments of cytochrome oxidase I (COI) and 16S genes. Individuals were collected in seven locations along the Mediterranean Sea, which cover a wide range of the species distribution. We found high haplotype diversity for COI and moderate diversity for 16S, and low nucleotide diversity for both genes. Our results for the COI gene showed many recent and exclusive haplotypes with few mutational changes, suggesting recent or ongoing population expansion. The Western and Eastern Mediterranean populations exhibited slight but significant genetic differentiation (COI gene) with higher genetic diversity in the East. The most ancient haplotype was not present in the westernmost sampling location (SE Spain). The oldest expansion time was observed in Turkey, corresponding to mid-Pleistocene. Turkey had also the highest genetic diversity (number of total and exclusive haplotypes, polymorphisms, haplotype and nucleotide diversity). This suggests that this region could be the origin of the subsequent colonizations through the Mediterranean Sea, a hypothesis that should be assessed with nuclear markers in future research.
Resumo:
Themarine environment seems, at first sight, to be a homogeneousmediumlacking barriers to species dispersal. Nevertheless, populations of marine species show varying levels of gene flow and population differentiation, so barriers to gene flow can often be detected. Weaimto elucidate the role of oceanographical factors ingenerating connectivity among populations shaping the phylogeographical patterns in the marine realm, which is not only a topic of considerable interest for understanding the evolution ofmarine biodiversity but also formanagement and conservation of marine life. For this proposal,we investigate the genetic structure and connectivity between continental and insular populations ofwhite seabreamin North East Atlantic (NEA) and Mediterranean Sea (MS) aswell as the influence of historical and contemporary factors in this scenario using mitochondrial (cytochrome b) and nuclear (a set of 9 microsatellite) molecular markers. Azores population appeared genetically differentiated in a single cluster using Structure analysis. This result was corroborated by Principal Component Analysis (PCA) and Monmonier algorithm which suggested a boundary to gene flow, isolating this locality. Azorean population also shows the highest significant values of FST and genetic distances for both molecular markers (microsatellites and mtDNA). We suggest that the breakdown of effective genetic exchange between Azores and the others' samples could be explained simultaneously by hydrographic (deep water) and hydrodynamic (isolating current regimes) factors acting as barriers to the free dispersal of white seabream(adults and larvae) and by historical factors which could be favoured for the survival of Azorean white seabream population at the last glaciation. Mediterranean islands show similar genetic diversity to the neighbouring continental samples and nonsignificant genetic differences. Proximity to continental coasts and the current system could promote an optimal larval dispersion among Mediterranean islands (Mallorca and Castellamare) and coasts with high gene flow.
Resumo:
Forest trees, like oaks, rely on high levels of genetic variation to adapt to varying environmental conditions. Thus, genetic variation and its distribution are important for the long-term survival and adaptability of oak populations. Climate change is projected to lead to increased drought and fire events as well as a northward migration of tree species, including oaks. Additionally, decline in oak regeneration has become increasingly concerning since it may lead to decreased gene flow and increased inbreeding levels. This will in turn lead to lowered levels of genetic diversity, negatively affecting the growth and survival of populations. At the same time, populations at the species’ distribution edge, like those in this study, could possess important stores of genetic diversity and adaptive potential, while also being vulnerable to climatic or anthropogenic changes. A survey of the level and distribution of genetic variation and identification of potentially adaptive genes is needed since adaptive genetic variation is essential for their long-term survival. Oaks possess a remarkable characteristic in that they maintain their species identity and specific environmental adaptations despite their propensity to hybridize. Thus, in the face of interspecific gene flow, some areas of the genome remain differentiated due to selection. This characteristic allows the study of local environmental adaptation through genetic variation analyses. Furthermore, using genic markers with known putative functions makes it possible to link those differentiated markers to potential adaptive traits (e.g., flowering time, drought stress tolerance). Demographic processes like gene flow and genetic drift also play an important role in how genes (including adaptive genes) are maintained or spread. These processes are influenced by disturbances, both natural and anthropogenic. An examination of how genetic variation is geographically distributed can display how these genetic processes and geographical disturbances influence genetic variation patterns. For example, the spatial clustering of closely related trees could promote inbreeding with associated negative effects (inbreeding depression), if gene flow is limited. In turn this can have negative consequences for a species’ ability to adapt to changing environmental conditions. In contrast, interspecific hybridization may also allow the transfer of genes between species that increase their adaptive potential in a changing environment. I have studied the ecologically divergent, interfertile red oaks, Quercus rubra and Q. ellipsoidalis, to identify genes with potential roles in adaptation to abiotic stress through traits such as drought tolerance and flowering time, and to assess the level and distribution of genetic variation. I found evidence for moderate gene flow between the two species and low interspecific genetic differences at most genetic markers (Lind and Gailing 2013). However, the screening of genic markers with potential roles in phenology and drought tolerance led to the identification of a CONSTANS-like (COL) gene, a candidate gene for flowering time and growth. This marker, located in the coding region of the gene, was highly differentiated between the two species in multiple geographical areas, despite interspecific gene flow, and may play a role in reproductive isolation and adaptive divergence between the two species (Lind-Riehl et al. 2014). Since climate change could result in a northward migration of trees species like oaks, this gene could be important in maintaining species identity despite increased contact zones between species (e.g., increased gene flow). Finally I examined differences in spatial genetic structure (SGS) and genetic variation between species and populations subjected to different management strategies and natural disturbances. Diverse management activities combined with various natural disturbances as well as species specific life history traits influenced SGS patterns and inbreeding levels (Lind-Riehl and Gailing submitted).
Resumo:
Rare plant conservation efforts must utilize current genetic methods to ensure the evolutionary potential of populations is preserved. One such effort involves the Key Tree Cactus, Pilosocereus robinii, which is an endangered columnar cactus native to the Florida Keys. The populations have precipitously declined over the past decade because of habitat loss and increasing soil salinity from rising sea levels and storm surge. Next-generation DNA sequencing was used to assess the genetic structure of the populations. Twenty individuals representative of both wild and extirpated cacti were chosen for Restriction Site Associated DNA (RAD) analysis. Samples processed using the HindIII and NotIII restriction enzymes produced 82,382,440 high quality reads used for genetic mapping, from which 5,265 Single Nucleotide Polymorphisms (SNPs) were discovered. The analysis revealed that the Keys’ populations are closely related with little population differentiation. In addition, the populations display evidence of inbreeding and low genetic diversity.
Resumo:
The aim of this study was to analyze the genetic characteristics and virulence phenotypes of Streptococcus suis, specifically, in clinical isolates of serotypes 2 and 9 (n = 195), obtained from diverse geographical areas across Spain. Pulsed-field gel electrophoresis (PFGE) typing identified 97 genetic profiles, 68% of which were represented by single isolates, indicative of a substantial genetic diversity among the S. suis isolates analyzed. Five PFGE profiles accounted for 33.3% of the isolates and were isolated from 38% of the herds in nine different provinces, indicative of the bacterium's widespread distribution in the Spanish swine population. Representative isolates of the most prevalent PFGE profiles of both serotypes were subjected to multilocus sequence typing (MLST) analysis. The results indicated that serotypes 2 and 9 have distinct genetic backgrounds. Serotype 2 isolates belong to the ST1 complex, a highly successful clone that has spread over most European countries. In accordance with isolates of this complex, most serotype 2 isolates also expressed the phenotype MRP(+)EF(+)SLY(+). Serotype 9 isolates belong to the ST61 complex, which is distantly related to the widespread European ST87 clone. Also, in contrast to most isolates of the European ST87 clone, which express the large variant MRP*, the majority of serotype 9 isolates (97.9%) did not express the protein.
Resumo:
This thesis investigates the phenotypic and genotypic diversity of non-dairy L. lactis strains and their application to dairy fermentations. A bank of non-dairy lactococci were isolated from grass, vegetables and the bovine rumen. Subsequent analysis of these L. lactis strains revealed seven strains to possess cremoris genotypes which did not correlate with their observed phenotypes. Multi-locus sequence typing (MLST) and average nucleotide identity (ANI) highlighted the genetic diversity of lactis and cremoris subspecies. The application of these non-dairy lactococci to cheese production was also assessed. In milk, non-dairy strains formed diverse volatile profiles and selected strains were used as adjuncts in a mini Gouda-type cheese system. Sensory analysis showed non-dairy strains to be strongly associated with the development of off-flavours and bitterness. However, microfluidisation appeared to reduce bitterness. A novel bacteriophage, ɸL47, was isolated using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. The phage, a member of the Siphoviridae, possessed a long tail fiber, previously unseen in dairy lactococcal phages. Genome sequencing revealed ɸL47 to be the largest sequenced lactococcal phage to date and owing to the high % similarity with ɸ949, a second member of the 949 group. Finally, to identify and characterise specific genes which may be important in niche adaptation and for applications to dairy fermentations, comparative genome sequence analysis was performed on L. lactis from corn (DPC6853), the bovine rumen (DPC6853) and grass (DPC6860). This study highlights the contribution of niche specialisation to the intra-species diversity of L. lactis and the adaptation of this organism to different environments. In summary this thesis describes the genetic diversity of L. lactis strains from outside the dairy environment and their potential application in dairy fermentations.
Resumo:
This thesis describes a study of various methods to produce bioactive peptides. Initially, the generation of anti-Cronobacter spp. peptides by fermentation of milk protein is described. Lactobacillus johnsonii DPC6026 was used to generate two previously described antimicrobial peptides. Phenotypic analysis indicated unsatisfactory casein hydrolysis. The genome of the strain was sequenced and annotated. Results showed a number of unique features present, most notably a large symmetrical inversion of approximately 750kb in comparison with the human isolate L. johnsonii NCC 533. The data suggest significant genetic diversity and intra-species genomic rearrangements within the L. johnsonii spp.. Cronobacter spp. have emerged as pathogens of concern to the powdered infant formula industry. Chapters 3 and 4 of this thesis describe novel methods to generate two antimicrobial peptides, Caseicin A and B. In Chapter 3 a bank of Bacillus strains was generated and investigated for caseicin production. Following casein hydrolysis by specific B. cereus and B. thuringiensis strains the peptides of interest were generated. Chapter 4 describes a sterile enzymatic method to generate peptides from casein. Bioinformatic tools were used to predict enzymes capable of liberating caseicin peptides from casein. Hydrolysates were generated using suitable enzymes, examined and some were found to produce peptides with activity against Cronobacter spp.. This study establishes a potential industrial-grade method to generate antimicrobial peptides. Administration of GLP-1 leads to improved glycaemic control in diabetes patients. Generation of a recombinant lactic acid bacteria capable of producing a GLP-1 analogue is described in Chapter 5. In-vivo analysis confirmed insulinotropic activity. The results illustrate a method using bacteriocin producing cellular machinery to generate bioactive peptides. This thesis describes the generation of bioactive peptides by bacterial fermentation, tailored enzymatic hydrolysis and recombinant bacterial methods. The techniques described contribute to bioactive peptide research with regards novel methods of production and industrial scale-up.
Resumo:
By definition, the domestication process leads to an overall reduction of crop genetic diversity. This lead to the current search of genomic regions in wild crop relatives (CWR), an important task for modern carrot breeding. Nowadays massive sequencing possibilities can allow for discovery of novel genetic resources in wild populations, but this quest could be aided by the use of a surrogate gene (to first identify and prioritize novel wild populations for increased sequencing effort). Alternative oxidase (AOX) gene family seems to be linked to all kinds of abiotic and biotic stress reactions in various organisms and thus have the potential to be used in the identification of CWR hotspots of environment-adapted diversity. High variability of DcAOX1 was found in populations of wild carrot sampled across a West-European environmental gradient. Even though no direct relation was found with the analyzed climatic conditions or with physical distance, population differentiation exists and results mainly from the polymorphisms associated with DcAOX1 exon 1 and intron 1. The relatively high number of amino acid changes and the identification of several unusually variable positions (through a likelihood ratio test), suggests that DcAOX1 gene might be under positive selection. However, if positive selection is considered, it only acts on some specific populations (i.e. is in the form of adaptive differences in different population locations) given the observed high genetic diversity. We were able to identify two populations with higher levels of differentiation which are promising as hot spots of specific functional diversity.
Resumo:
In the last three decades, the range of the Egyptian mongoose (Herpestes ichneumon) has increased in the Iberian Peninsula. A panel of microsatellites was used to confront the patterns of genetic diversity of the species with the scenario of its recent northward expansion in its Iberian range. Evidence of substructure and significant genetic differentiation within the studied population were recorded, with a central-northern subpopulation (CNorth) and a southern subpopulation (S). Northward range expansion was supported by the observed allelic frequencies, diversity parameters, and observed heterozygosity of the studied loci, with S showing a higher allelic diversity and a higher number of private alleles than CNorth. Patterns of isolation-by-distance and isolation-by-barrier as a result of the Tagus River were demonstrated, suggesting that the river acted as a semi-permeable barrier, possibly leading to genetic differentiation of the studied population. The observed individuals from CNorth in southern locations and individuals from S in central/northern areas might comprise evidence for long range dispersals across the studied range. A bottleneck event after population expansion was supported by a significant heterozygosity deficiency in CNorth, which is in agreement with a scenario of founder events occurring in recently colonized areas after the crossing of the Tagus River.
Resumo:
Forage peanut improvement for use in grass?legume mixtures is expected to have a great impact on the sustainability of Brazilian livestock production. Eighteen cloned Arachis spp. ecotypes were evaluated under clipping in a Brazilian Cerrado region and results analysed using a mixed model methodology. The objective was to estimate genetic and phenotypic parameters and to select the best ecotypes based on selection index applied on their predicted genotypic value. The traits of total dry-matter (DM) and leaf DM yield presented moderate (0_30 < h2g < 0_50) to high (>0_50) broad-sense heritability, in contrast to the low genetic variability in nutritional quality-associated traits. Ecotypes of Arachis spp. contained average crude protein concentrations of 224 g kg _1 DM in leaves and 138 g kg _1 DM in stems, supporting the potential role of these species to overcome the low protein content in Cerrado pastures. The correlations between yield traits and traits associated with low nutritional value in leaves were consistently significant and positive. Genetic correlations among all the yield traits evaluated during the rainy or dry seasons were significant and positive. The ecotypes were ranked based on selection index. The next step is to validate long-term selection of grass?Arachis in combination with pastures under competition and adjusted grazing in the Cerrado region.
Resumo:
The domestication and selection processes in pigs and rabbits have resulted in the constitution of multiple breeds with broad phenotypic diversity. Population genomics analysis and Genome-wide association study analysis can be utilized to gain insights into the ancestral origins, genetic diversity, and the presence of lethal mutations across these diverse breeds. In this thesis, we analysed the dataset obtained from three Italian Pig breeds to detect deleterious alleles. We screened the dataset for genetic markers showing homozygous deficiency using two approaches single marker and haplotype-based approach. Moreover, Genome-wide association study analyses were performed to detect genetic markers associated with pigs' reproductive traits. In rabbits, we investigated the application of SNP bead chip for detection signatures of selection in rabbits using different methods. This analysis was implemented for the first time in different fancy and meet rabbit breeds. Multiple approaches were utilized for the detection of the selection of signatures including Fst analysis, ROH analysis, PCAdapt analysis, and haplotype-based analysis. The analysis in pigs was able to identify five putative deleterious SNPs and nine putative deleterious haplotypes in the analysed Italian Pig breeds. The genomic regions of the detected putative deleterious genomic markers harboring loss of function variants such as the Frameshift variant, start lost, and splice donor variant. Those variants are close to important candidate genes such as IGF2BP1, ADGRL4, and HGF. In rabbits, multiple genomic regions were detected to be under selection of signature. These genomic regions harbor candidate genes associated with coat color phenotype (MC1R, TYR, and ASIP), hair structure (LIPH), and body size (HMGA2 and COL2A1). The described results in rabbits and pigs could be used to improve breeding programs by excluding the deleterious genetic markers carriers and incorporating candidate genes for coat color, body size, and meat production in rabbit breeding programs to enhance desired traits
Resumo:
The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.
Resumo:
• We developed the first microsatellites for Passiflora setacea and characterized new sets of markers for P. edulis and P. cincinnata, enabling further genetic diversity studies to support the conservation and breeding of passion fruit species. • We developed 69 microsatellite markers and, in conjunction with assessments of cross-amplification using primers available from the literature, present 43 new polymorphic microsatellite loci for three species of Passiflora. The mean number of alleles per locus was 3.1, and the mean values of the expected and observed levels of heterozygosity were 0.406 and 0.322, respectively. • These microsatellite markers will be valuable tools for investigating the genetic diversity and population structure of wild and commercial species of passion fruit (Passiflora spp.) and may be useful for developing conservation and improvement strategies by contributing to the understanding of the mating system and hybridization within the genus.
Resumo:
• Microsatellite primers were developed for Orthophytum ophiuroides, a rupicolous bromeliad species endemic to neotropical rocky fields. These microsatellite loci will be used to investigate population differentiation and species cohesion in such fragmented environments. The loci were tested for cross-amplification in related bromeliad species. • Eleven polymorphic microsatellite markers were isolated and characterized from an enriched library of O. ophiuroides. The loci were tested on 42 individuals from two populations of this species. The number of alleles per locus ranged from three to nine and the expected and observed heterozygosities ranged from 0.167 to 0.870 and from 0.369 to 0.958, respectively. Seven loci successfully amplified in other related bromeliad species. • Our results suggest that the microsatellite loci developed here will be useful to assess genetic diversity and gene flow in O. ophiuroides for the investigation of population differentiation and species cohesion in neotropical mountainous habitats.