808 resultados para Plamodium falciparum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective: This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods: The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results: Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite counting accuracy for all players as a function of the number of games considered and the experience of the players. In addition, we propose a mathematical equation that accurately models the collective parasite counting performance. Conclusions: This research validates the online gaming approach for crowdsourced counting of malaria parasites in images of thick blood films. The findings support the conclusion that nonexperts are able to rapidly learn how to identify the typical features of malaria parasites in digitized thick blood samples and that combining the analyses of several users provides similar parasite counting accuracy rates as those of expert microscopists. This experiment illustrates the potential of the crowdsourced gaming approach for performing routine malaria parasite quantification, and more generally for solving biomedical image analysis problems, with future potential for telediagnosis related to global health challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 3.0-Å structure of a 190-residue fragment of intercellular adhesion molecule-1 (ICAM-1, CD54) reveals two tandem Ig-superfamily (IgSF) domains. Each of two independent molecules dimerizes identically with a symmetry-related molecule over a hydrophobic interface on the BED sheet of domain 1, in agreement with dimerization of ICAM-1 on the cell surface. The residues that bind to the integrin LFA-1 are well oriented for bivalent binding in the dimer, with the critical Glu-34 residues pointing away from each other on the periphery. Residues that bind to rhinovirus are in the flexible BC and FG loops at the tip of domain 1, and these and the upper half of domain 1 are well exposed in the dimer for docking to virus. By contrast, a residue important for binding to Plasmodium falciparum-infected erythrocytes is in the dimer interface. The presence of A′ strands in both domains 1 and 2, conserved hydrogen bonds at domain junctions, and elaborate hydrogen bond networks around the key integrin binding residues in domain 1 make these domains suited to resist tensile forces during adhesive interactions. A subdivision of the intermediate (I) set of IgSF domains is proposed in which domain 1 of ICAM-1 and previously described I set domains belong to the I1 set and domain 2 of ICAM-1, ICAM-2, and vascular cell adhesion molecule-1 belong to the I2 set.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing resistance of Plasmodium falciparum malaria parasites to chloroquine and the dihydrofolate reductase (DHFR) inhibitors pyrimethamine and cycloguanil have sparked renewed interest in the antimalarial drugs WR99210 and proguanil, the cycloguanil precursor. To investigate suggestions that WR99210 and proguanil act against a target other than the reductase moiety of the P. falciparum bifunctional DHFR–thymidylate synthase enzyme, we have transformed P. falciparum with a variant form of human DHFR selectable by methotrexate. Human DHFR was found to fully negate the antiparasitic effect of WR99210, thus demonstrating that the only significant action of WR99210 is against parasite DHFR. Although the human enzyme also resulted in greater resistance to cycloguanil, no decrease was found in the level of susceptibility of transformed parasites to proguanil, thus providing evidence of intrinsic activity of this parent compound against a target other than DHFR. The transformation system described here has the advantage that P. falciparum drug-resistant lines are uniformly sensitive to methotrexate and will complement transformation with existing pyrimethamine-resistance markers in functional studies of P. falciparum genes. This system also provides an approach for screening and identifying novel DHFR inhibitors that will be important in combined chemotherapeutic formulations against malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aryloxyphenoxypropionates, inhibitors of the plastid acetyl-CoA carboxylase (ACC) of grasses, also inhibit Toxoplasma gondii ACC. Clodinafop, the most effective of the herbicides tested, inhibits growth of T. gondii in human fibroblasts by 70% at 10 μM in 2 days and effectively eliminates the parasite in 2–4 days at 10–100 μM. Clodinafop is not toxic to the host cell even at much higher concentrations. Parasite growth inhibition by different herbicides is correlated with their ability to inhibit ACC enzyme activity, suggesting that ACC is a target for these agents. Fragments of genes encoding the biotin carboxylase domain of multidomain ACCs of T. gondii, Plasmodium falciparum, Plasmodium knowlesi, and Cryptosporidium parvum were sequenced. One T. gondii ACC (ACC1) amino acid sequence clusters with P. falciparum ACC, P. knowlesi ACC, and the putative Cyclotella cryptica chloroplast ACC. Another sequence (ACC2) clusters with that of C. parvum ACC, probably the cytosolic form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Papua New Guinea (PNG), numerous blood group polymorphisms and hemoglobinopathies characterize the human population. Human genetic polymorphisms of this nature are common in malarious regions, and all four human malaria parasites are holoendemic below 1500 meters in PNG. At this elevation, a prominent condition characterizing Melanesians is α+-thalassemia. Interestingly, recent epidemiological surveys have demonstrated that α+-thalassemia is associated with increased susceptibility to uncomplicated malaria among young children. It is further proposed that α+-thalassemia may facilitate so-called “benign” Plasmodium vivax infection to act later in life as a “natural vaccine” against severe Plasmodium falciparum malaria. Here, in a P. vivax-endemic region of PNG where the resident Abelam-speaking population is characterized by a frequency of α+-thalassemia ≥0.98, we have discovered the mutation responsible for erythrocyte Duffy antigen-negativity (Fy[a−b−]) on the FY*A allele. In this study population there were 23 heterozygous and no homozygous individuals bearing this new allele (allele frequency, 23/1062 = 0.022). Flow cytometric analysis illustrated a 2-fold difference in erythroid-specific Fy-antigen expression between heterozygous (FY*A/FY*Anull) and homozygous (FY*A/FY*A) individuals, suggesting a gene-dosage effect. In further comparisons, we observed a higher prevalence of P. vivax infection in FY*A/FY*A (83/508 = 0.163) compared with FY*A/FY*Anull (2/23 = 0.087) individuals (odds ratio = 2.05, 95% confidence interval = 0.47–8.91). Emergence of FY*Anull in this population suggests that P. vivax is involved in selection of this erythroid polymorphism. This mutation would ultimately compromise α+-thalassemia/P. vivax-mediated protection against severe P. falciparum malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasion of erythrocytes by malaria parasites is mediated by specific molecular interactions. Whereas Plasmodium vivax and Plasmodium knowlesi use the Duffy blood group antigen, Plasmodium falciparum uses sialic acid residues of glycophorin A as receptors to invade human erythrocytes. P. knowlesi uses the Duffy antigen as well as other receptors to invade rhesus erythrocytes by multiple pathways. Parasite ligands that bind these receptors belong to a family of erythrocyte-binding proteins (EBP). The EBP family includes the P. vivax and P. knowlesi Duffy-binding proteins, P. knowlesi β and γ proteins, which bind alternate receptors on rhesus erythrocytes, and P. falciparum erythrocyte-binding antigen (EBA-175), which binds sialic acid residues of human glycophorin A. Binding domains of each EBP lie in a conserved N-terminal cysteine-rich region, region II, which contains around 330 amino acids with 12 to 14 conserved cysteines. Regions containing binding residues have now been mapped within P. vivax and P. knowlesi β region II. Chimeric domains containing P. vivax region II sequences fused to P. knowlesi β region II sequences were expressed on the surface of COS cells and tested for binding to erythrocytes. Binding residues of P. vivax region II lie in a 170-aa stretch between cysteines 4 and 7, and binding residues of P. knowlesi β region II lie in a 53-aa stretch between cysteines 4 and 5. Mapping regions responsible for receptor recognition is an important step toward understanding the structural basis for the interaction of these parasite ligands with host receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the South West Pacific region, the striking geographical correlation between the frequency of α+-thalassemia and the endemicity of Plasmodium falciparum suggests that this hemoglobinopathy provides a selective advantage against malaria. In Vanuatu, paradoxically, α+-thalassemia increases the incidence of contracting mild malaria in the first 2 years of life, but severe disease was too uncommon to assess adequately. Therefore, we undertook a prospective case-control study of children with severe malaria on the north coast of Papua New Guinea, where malaria transmission is intense and α+-thalassemia affects more than 90% of the population. Compared with normal children, the risk of having severe malaria was 0.40 (95% confidence interval 0.22–0.74) in α+-thalassemia homozygotes and 0.66 (0.37–1.20) in heterozygotes. Unexpectedly, the risk of hospital admission with infections other than malaria also was reduced to a similar degree in homozygous (0.36; 95% confidence interval 0.22–0.60) and heterozygous (0.63; 0.38–1.07) children. This clinical study demonstrates that a malaria resistance gene protects against disease caused by infections other than malaria. The mechanism of the remarkable protective effect of α+-thalassemia against severe childhood disease remains unclear but must encompass the clear interaction between this hemoglobinopathy and both malarial and nonmalarial infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uptake and expression of extracellular DNA has been established as a mechanism for horizontal transfer of genes between bacterial species. Such transfer can support acquisition of advantageous elements, including determinants that affect the interactions between infectious organisms and their hosts. Here we show that erythrocyte-stage Plasmodium falciparum malaria parasites spontaneously take up DNA from the host cell cytoplasm into their nuclei. We have exploited this finding to produce levels of reporter expression in P.falciparum that are substantially improved over those obtained by electroporation protocols currently used to transfect malaria parasites. Parasites were transformed to a drug-resistant state when placed into cell culture with erythrocytes containing a plasmid encoding the human dihydrofolate reductase sequence. The findings reported here suggest that the malaria genome may be continually exposed to exogenous DNA from residual nuclear material in host erythrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DC) are crucial for the induction of immune responses and thus an inviting target for modulation by pathogens. We have previously shown that Plasmodium falciparum-infected erythrocytes inhibit the maturation of DCs. Intact P. falciparum-infected erythrocytes can bind directly to CD36 and indirectly to CD51. It is striking that these receptors, at least in part, also mediate the phagocytosis of apoptotic cells. Here we show that antibodies against CD36 or CD51, as well as exposure to early apoptotic cells, profoundly modulate DC maturation and function in response to inflammatory signals. Although modulated DCs still secrete tumor necrosis factor-α, they fail to activate T cells and now secrete IL-10. We therefore propose that intact P. falciparum-infected erythrocytes and apoptotic cells engage similar pathways regulating DC function. These findings may have important consequences for the treatment of malaria and may suggest strategies for modulating pathological immune responses in autoimmune diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant pox viruses have been generated for vaccination against heterologous pathogens. Amongst these, the following are notable examples. (i) The engineering of the Copenhagen strain of vaccinia virus to express the rabies virus glycoprotein. When applied in baits, this recombinant has been shown to vaccinate the red fox in Europe and raccoons in the United States, stemming the spread of rabies virus infection in the wild. (ii) A fowlpox-based recombinant expressing the Newcastle disease virus fusion and hemagglutinin glycoproteins has been shown to protect commercial broiler chickens for their lifetime when the vaccine was administered at 1 day of age, even in the presence of maternal immunity against either the Newcastle disease virus or the pox vector. (iii) Recombinants of canarypox virus, which is restricted for replication to avian species, have provided protection against rabies virus challenge in cats and dogs, against canine distemper virus, feline leukemia virus, and equine influenza virus disease. In humans, canarypox virus-based recombinants expressing antigens from rabies virus, Japanese encephalitis virus, and HIV have been shown to be safe and immunogenic. (iv) A highly attenuated vaccinia derivative, NYVAC, has been engineered to express antigens from both animal and human pathogens. Safety and immunogenicity of NYVAC-based recombinants expressing the rabies virus glycoprotein, a polyprotein from Japanese encephalitis virus, and seven antigens from Plasmodium falciparum have been demonstrated to be safe and immunogenic in early human vaccine studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The circumsporozoite (CS) protein of malaria parasites (Plasmodium) covers the surface of sporozoites that invade hepatocytes in mammalian hosts and macrophages in avian hosts. CS genes have been characterized from many Plasmodium that infect mammals; two domains of the corresponding proteins, identified initially by their conservation (region I and region II), have been implicated in binding to hepatocytes. The CS gene from the avian parasite Plasmodium gallinaceum was characterized to compare these functional domains to those of mammalian Plasmodium and for the study of Plasmodium evolution. The P. gallinaceum protein has the characteristics of CS proteins, including a secretory signal sequence, central repeat region, regions of charged amino acids, and an anchor sequence. Comparison with CS signal sequences reveals four distinct groupings, with P. gallinaceum most closely related to the human malaria Plasmodium falciparum. The 5-amino acid sequence designated region I, which is identical in all mammalian CS and implicated in hepatocyte invasion, is different in the avian protein. The P. gallinaceum repeat region consists of 9-amino acid repeats with the consensus sequence QP(A/V)GGNGG(A/V). The conserved motif designated region II-plus, which is associated with targeting the invasion of liver cells, is also conserved in the avian protein. Phylogenetic analysis of the aligned Plasmodium CS sequences yields a tree with a topology similar to the one obtained using sequence data from the small subunit rRNA gene. The phylogeny using the CS gene supports the proposal that the human malaria P. falciparum is significantly more related to avian parasites than to other parasites infecting mammals, although the biology of sporozoite invasion is different between the avian and mammalian species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human malaria parasite Plasmodium falciparum contains sphingomyelin synthase in its Golgi apparatus and in a network of tubovesicular membranes in the cytoplasm of the infected erythrocyte. Palmitoyl and decanoyl analogues of 1-phenyl-2-acylamino-3-morpholino-1-propanol inhibit the enzyme activity in infected erythrocytes. An average of 35% of the activity is extremely sensitive to these drugs and undergoes a rapid, linear decrease at drug concentrations of 0.05-1 microM. The remaining 65% suffers a slower linear inhibition at drug concentrations ranging from 25 to 500 microM. Evidence is presented that inhibition of the sensitive fraction alone selectively disrupts the appearance of the interconnected tubular network in the host cell cytoplasm, without blocking secretory development at the parasite plasma membrane or in organelles within the parasite, such as the Golgi and the digestive food vacuole. This inhibition also blocks parasite proliferation in culture, indicating that the sensitive sphingomyelin synthase activity as well as the tubovesicular network may provide rational targets for drugs against malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane. Plasmodium berghei IE infection in pregnant BALB/c mice is a model for severe placental malaria (PM). Here, we describe a transgenic P. berghei parasite expressing the full-length var2CSA extracellular region (domains DBL1X to DBL6ε) fused to a P. berghei exported protein (EMAP1) and characterize a var2CSA-based mouse model of PM. BALB/c mice were infected at midgestation with different doses of P. berghei-var2CSA (P. berghei-VAR) or P. berghei wild-type IEs. Infection with 10(4) P. berghei-VAR IEs induced a higher incidence of stillbirth and lower fetal weight than P. berghei At doses of 10(5) and 10(6) IEs, P. berghei-VAR-infected mice showed increased maternal mortality during pregnancy and fetal loss, respectively. Parasite loads in infected placentas were similar between parasite lines despite differences in maternal outcomes. Fetal weight loss normalized for parasitemia was higher in P. berghei-VAR-infected mice than in P. berghei-infected mice. In vitro assays showed that higher numbers of P. berghei-VAR IEs than P. berghei IEs adhered to placental tissue. Immunization of mice with P. berghei-VAR elicited IgG antibodies reactive to DBL1-6 recombinant protein, indicating that the topology of immunogenic epitopes is maintained between DBL1-6-EMAP1 on P. berghei-VAR and recombinant DBL1-6 (recDBL1-6). Our data suggested that impairments in pregnancy caused by P. berghei-VAR infection were attributable to var2CSA expression. This model provides a tool for preclinical evaluation of protection against PM induced by approaches that target var2CSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a very severe and in many cases incurable disease. To date, benzimidazoles such as albendazole and mebendazole are the only approved chemotherapeutical treatment options. Benzimidazoles inhibit metacestode proliferation, but do not act parasiticidal. Thus, benzimidazoles have to be taken a lifelong, can cause adverse side effects such as hepatotoxicity, and are ineffective in some patients. We here describe a newly developed screening cascade for the evaluation of the in vitro efficacy of new compounds that includes assessment of parasiticidal activity. The Malaria Box from Medicines for Malaria Venture (MMV), comprised of 400 commercially available chemicals that show in vitro activity against Plasmodium falciparum, was repurposed. Primary screening was carried out at 10 μM by employing the previously described PGI assay, and resulted in the identification of 24 compounds that caused physical damage in metacestodes. Seven out of these 24 drugs were also active at 1 μM. Dose-response assays revealed that only 2 compounds, namely MMV665807 and MMV665794, exhibited an EC50 value below 5 μM. Assessments using human foreskin fibroblasts and Reuber rat hepatoma cells showed that the salicylanilide MMV665807 was less toxic for these two mammalian cell lines than for metacestodes. The parasiticidal activity of MMV665807 was then confirmed using isolated germinal layer cell cultures as well as metacestode vesicles by employing viability assays, and its effect on metacestodes was morphologically evaluated by electron microscopy. However, both oral and intraperitoneal application of MMV665807 to mice experimentally infected with E. multilocularis metacestodes did not result in any reduction of the parasite load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum depends on delivery of nutrients. Moreover, infection challenges cell volume constancy of the host erythrocyte requiring enhanced activity of cell volume regulatory mechanisms. Patch clamp recording demonstrated inwardly and outwardly rectifying anion channels in infected but not in control erythrocytes. The molecular identity of those channels remained elusive. We show here for one channel type that voltage dependence, cell volume sensitivity, and activation by oxidation are identical to ClC-2. Moreover, Western blots and FACS analysis showed protein and functional ClC-2 expression in human erythrocytes and erythrocytes from wild type (Clcn2(+/+)) but not from Clcn2(-/-) mice. Finally, patch clamp recording revealed activation of volume-sensitive inwardly rectifying channels in Plasmodium berghei-infected Clcn2(+/+) but not Clcn2(-/-) erythrocytes. Erythrocytes from infected mice of both genotypes differed in cell volume and inhibition of ClC-2 by ZnCl(2) (1 mm) induced an increase of cell volume only in parasitized Clcn2(+/+) erythrocytes. Lack of ClC-2 did not inhibit P. berghei development in vivo nor substantially affect the mortality of infected mice. In conclusion, activation of host ClC-2 channels participates in the altered permeability of Plasmodium-infected erythrocytes but is not required for intraerythrocytic parasite survival.