1000 resultados para Pirapo River
Resumo:
The European Water Framework Directive requires EU Member States to introduce water quality objectives for all water bodies, including coastal waters. Measures will have to be introduced if these objectives are not met, given predictions based on current trends. In this context, the estimation of future fluxes of nutrients and contaminants in the catchment, and the evaluation of policies to improve water quality in coastal zones are an essential part of river basin management plans. This paper investigates the use of scenarios for integrated catchment/coastal zone management in the Humber Estuary in the U.K. The context of this ongoing research is a European research project which aims to assist the implementation of integrated catchment and coastal zone management by analysing the response of the coastal sea to changes in fluxes of nutrients and contaminants from the catchments. The example of the Humber illustrates how scenarios focusing on water quality improvement can provide a useful tool to investigate future fluxes and evaluate policy options for a more integrated coastal/catchment management strategy.
Resumo:
To restore lateral connectivity in highly regulated river-floodplain systems, it has become necessary to implement localized, "managed" connection flows, made possible using floodplain irrigation infrastructure. These managed flows contrast with "natural", large-scale, overbank flood pulses. We compared the effects of a managed and a natural connection event on (i) the composition of the large-bodied fish community and (ii) the structure of an endangered catfish population of a large floodplain lake. The change in community composition following the managed connection was not greater than that exhibited between seasons or years during disconnection. By contrast, the change in fish community structure following the natural connection was much larger than that attributed to background, within-and between-year variability during disconnection. Catfish population structure only changed significantly following the natural flood. While the natural flood increased various population rates of native fishes, it also increased those of non-native carp, a pest species. To have a positive influence on native biodiversity, environmental flows may need to be delivered to floodplains in a way that simulates the properties of natural flood pulses. A challenge, however, will be managing river-floodplain connectivity to benefit native more than non-native species.
Direct measurements of reaeration rates using noble gas tracers in the River Lagan, Northern Ireland
Resumo:
This study examined how riverine inputs, in particular sediment, influenced the community structure and trophic composition of reef fishes within Rio Bueno, north Jamaica. Due to river discharge a distinct gradient of riverine inputs existed across the study sites. Results suggested that riverine inputs (or a factor associated with them) had a structuring effect on fish community structure. Whilst fish communities at all sites were dominated by small individuals (
Resumo:
Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers
Resumo:
The partially semi-arid Oldman River basin (OMRB), located in southern Alberta (Canada), has an area of 28 200 km2, is forested in its western headwater part, and is used for agriculture in its eastern part. Hydrometric measurements indicate that flow in the Oldman River has decreased by ~34% between 1913 and 2003, and it is predicted that water withdrawals will increase in the next 20 years. The objective of this study was to determine whether isotope ratio measurements can provide further insight into the water dynamics of the Oldman River and its tributaries. Surface water samples were collected monthly between December 2000 and March 2003. Groundwater samples were taken from 58 wells during one-time sampling trips. Runoff within the OMRB is currently about 70 mm year-1, with a corresponding runoff ratio of 0Ð18. Seasonal flow characteristics are markedly different upstream and downstream of the Oldman River reservoir. Upstream, sharp increases in flow in late spring and early summer are followed by a rapid decrease to base flow levels. Downstream, a prolonged high flow peak is observed due to the storage effect of the Oldman River reservoir. The seasonal variation in the isotopic composition of surface water from upstream sites is small. This suggests that peak runoff is not predominantly generated by melting snow accumulated during the preceding winter, but mainly by relatively well-mixed young groundwater. A significant increase in the d18O and d2H values in the downstream part of the basin was observed. The increase in the isotopic values is partly due to surface water and groundwater influx with progressively higher d18O and d2H values in the eastern part, and partly due to evaporation. Hence, the combination of hydrometric data with isotope measurements yields valuable insights into the water dynamics in the OMRB that may be further refined with more intensive measurement programmes in the future.