817 resultados para Pinch-menetelmä
Resumo:
Skunks are becoming increasingly popular as pets. As such, they often undergo a variety of surgical procedures. Two pet skunks undergoing a dermatological examination, including skin biopsy, were anaesthetised with a combination of dexmedetomidine (0.02 mg/kg), butorphanol (0.3 mg/kg), and alfaxalone (4 mg/kg), all administered intramuscularly. Anaesthesia was characterised by rapid onset, absence of detectable side effects and fast recovery after atipamezole administration. Biopsies and toe-pinch did not elicit cardiorespiratory responses, nor did it result in movements or lightening of the anaesthetic depth. Both skunks recovered uneventfully, and showed normal appetite and regular defecation within eight hours following surgery. However, both the animals experienced mild hypothermia at recovery. The dexmedetomidine-alfaxalone-butorphanol combination produced satisfactory anaesthesia in the two skunks, object of this report. This anaesthetic protocol may be used in this species to provide immobility, myorelaxation, unconsciousness and analgesia during skin biopsy or other minor surgical procedures.
Resumo:
Ocean Drilling Program Site 975 is located near the base of the Menorca Rise in the South Balearic Basin of the western Mediterranean Sea. Coring at this site penetrated the Pliocene/Miocene boundary and recovered a sequence of sediments that represent the final stages of salt deposition and the transition from evaporitic to open marine conditions at the end of the Miocene (Messinian). Detailed petrographic observations and bulk mineralogical analyses by X-ray diffraction form the basis for preliminary interpretations of depositional environments for this section. Gypsum is thought to have been deposited in an evaporating basin below wave base. Cycles consisting of a clay layer overlain by gypsiferous chalk, laminated gypsum, and finally pinch-and-swell gypsum suggest upsection increases in salinity. The gypsum section is overlain by two exotic sand layers thought to mark events of fresher water (marine or meteoric) inflow to the basin. Gypsum deposition terminated and was replaced by inorganic precipitation of micritic calcite with periodic, variable dilution by fine-grained terrigenous sediment. The micritic sediments have fine, slightly wavy, laminations indicating either an algal/microbial mat origin, or varve-like fluctuations in deposition, perhaps in a deep basin. The Pliocene/Miocene boundary falls within an interval of banded micritic silty clays that reflect the final environmental fluctuations during the transition to the open marine conditions of the Pliocene.
Resumo:
In this paper, we show room temperature operation of a quantum well infrared photodetector (QWIP) using lateral conduction through ohmic contacts deposited at both sides of two n-doped quantum wells. To reduce the dark current due to direct conduction in the wells, we apply an electric field between the quantum wells and two pinch-off Schottky gates, in a fashion similar to a field effect device. Since the normal incidence absorption is strongly reduced in intersubband transitions in quantum wells, we first analyze the response of a detector based on quantum dots (QD). This QD device shows photocurrent signal up to 150 K when it is processed in conventional vertical detector. However, it is possible to observe room temperature signal when it is processed in a lateral structure. Finally, the room temperature photoresponse of the QWIP is demonstrated, and compared with theory. An excellent agreement between the estimated and measured characteristics of the device is found
Resumo:
Four periodically time-varying methane–air laminar coflow jet diffusion flames, each forced by pulsating the fuel jet's exit velocity Uj sinusoidally with a different modulation frequency wj and with a 50% amplitude variation, have been computed. Combustion of methane has been modeled by using a chemical mechanism with 15 species and 42 reactions, and the solution of the unsteady Navier–Stokes equations has been obtained numerically by using a modified vorticity-velocity formulation in the limit of low Mach number. The effect of wj on temperature and chemistry has been studied in detail. Three different regimes are found depending on the flame's Strouhal number S=awj/Uj, with a denoting the fuel jet radius. For small Strouhal number (S=0.1), the modulation introduces a perturbation that travels very far downstream, and certain variables oscillate at the frequency imposed by the fuel jet modulation. As the Strouhal number grows, the nondimensional frequency approaches the natural frequency of oscillation of the flickering flame (S≃0.2). A coupling with the pulsation frequency enhances the effect of the imposed modulation and a vigorous pinch-off is observed for S=0.25 and S=0.5. Larger values of S confine the oscillation to the jet's near-exit region, and the effects of the pulsation are reduced to small wiggles in the temperature and concentration values. Temperature and species mass fractions change appreciably near the jet centerline, where variations of over 2% for the temperature and 15% and 40% for the CO and OH mass fractions, respectively, are found. Transverse to the jet movement, however, the variations almost disappear at radial distances on the order of the fuel jet radius, indicating a fast damping of the oscillation in the spanwise direction.
Resumo:
A Ca2+-dependent synaptic vesicle-recycling pathway emanating from the plasma membrane adjacent to the dense body at the active zone has been demonstrated by blocking pinch-off of recycling membrane by using the Drosophila mutant, shibire. Exposure of wild-type Drosophila synapses to low Ca2+/high Mg2+ saline is shown here to block this active zone recycling pathway at the stage in which invaginations of the plasma membrane develop adjacent to the dense body. These observations, in combination with our previous demonstration that exposure to high Ca2+ causes “docked” vesicles to accumulate in the identical location where active zone endocytosis occurs, suggest the possibility that a vesicle-recycling pathway emanating from the active zone may exist that is stimulated by exposure to elevated Ca2+, thereby causing an increase in vesicle recycling, and is suppressed by exposure to low Ca2+ saline, thereby blocking newly forming vesicles at the invagination stage. The presence of a Ca2+-dependent endocytotic pathway at the active zone opens up the following possibilities: (i) electron microscopic omega-shaped images (and their equivalent, freeze fracture dimples) observed at the active zone adjacent to the dense body could represent endocytotic images (newly forming vesicles) rather than exocytotic images; (ii) vesicles observed attached to the plasma membrane adjacent to the dense body could represent newly formed vesicles rather than vesicles “docked” for release of transmitter.
Resumo:
The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.
Resumo:
Seventh thousand.
Resumo:
Top Row: Arthur Leete, Walter Fishleigh, Emmet Annis, Edward French, Van Lieu Minor
3rd Row: Irving Goodwin, Harry Coe, Frank Nicol, st. mngr. Harold Holmes, John S. Curtis, George Read, John Hodges
2nd Row: coach Keene Fitzpatrick, Floyd Rowe, Guy Leslie Waite, Horace Ramey, captain Arthur Rebstock, John Garrels, David Dunlap, Ath. Dir. Charles Baird
Front Row: Gayle Dull, Martin Daane, Ormond E. Hunt, Claude Pinch
Resumo:
Top Row: Fred Marker, Robert W. Gotschal, Edward French
3rd Row: Ath. Dir. Charles Baird, Claude Pinch, John S. Curtis, Raymond Stewart, James Maloney, Irving Goodwin, Homer Heath, coach Keene Fitzpatrick
2nd Row: Gayle Dull, David Dunlap, Harry Coe, Horace Ramey, John Garrels, Floyd Rowe, John Hodgen
Front Row: Arthur Leete, Frank Davey, ? Bowman, Ned Clark, George Bristol, Elmer Schank
Resumo:
Aim: The aim of this study was to characterize the bacterial community adhering to the mucosa of the terminal ileum, and proximal and distal colon of the human digestive tract. Methods and Results: Pinch samples of the terminal ileum, proximal and distal colon were taken from a healthy 35-year-old, and a 68-year-old subject with mild diverticulosis. The 16S rDNA genes were amplified using a low number of PCR cycles, cloned, and sequenced. In total, 361 sequences were obtained comprising 70 operational taxonomic units (OTU), with a calculated coverage of 82.6%. Twenty-three per cent of OTU were common to the terminal ileum, proximal colon and distal colon, but 14% OTU were only found in the terminal ileum, and 43% were only associated with the proximal or distal colon. The most frequently represented clones were from the Clostridium group XIVa (24.7%), and the Bacteroidetes (Cytophaga-Flavobacteria-Bacteroides ) cluster (27.7%). Conclusion: Comparison of 16S rDNA clone libraries of the hindgut across mammalian species confirms that the distribution of phylogenetic groups is similar irrespective of the host species. Lesser site-related differences within groups or clusters of organisms, are probable. Significance and Impact: This study provides further evidence of the distribution of the bacteria on the mucosal surfaces of the human hindgut. Data contribute to the benchmarking of the microbial composition of the human digestive tract.
Resumo:
A volume-of-fluid numerical method is used to predict the dynamics of shear-thinning liquid drop formation in air from a circular orifice. The validity of the numerical calculation is confirmed for a Newtonian liquid by comparison with experimental measurements. For particular values of Weber number and Froude number, predictions show a more rapid pinch-off, and a reduced number of secondary droplets, with increasing shear-thinning. Also a minimum in the limiting drop length occurs for the smallest Weber number as the zero-shear viscosity is varied. At the highest viscosity, the drop length is reduced due to shear-thinning, whereas at lower viscosities there is little effect of shear-thinning. The evolution of predicted drop shape, drop thickness and length, and the configuration at pinch-off are discussed for shear-thinning drops. The evolution of a drop of Bingham yield stress liquid is also considered as a limiting case. In contrast to the shear-thinning cases, it exhibits a plug flow prior to necking, an almost step-change approach to pinch-off of a torpedo shaped drop following the onset of necking, and a much smaller neck length; no secondary drops are formed. The results demonstrate the potential of the numerical model as a design tool in tailoring the fluid rheology for controlling drop formation behaviour. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are represented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the bead-on-a-string effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.
Resumo:
Objective: To validate the unidimensionality of the Action Research Arm Test (ARAT) using Mokken analysis and to examine whether scores of the ARAT can be transformed into interval scores using Rasch analysis. Subjects and methods: A total of 351 patients with stroke were recruited from 5 rehabilitation departments located in 4 regions of Taiwan. The 19-item ARAT was administered to all the subjects by a physical therapist. The data were analysed using item response theory by non-parametric Mokken analysis followed by Rasch analysis. Results: The results supported a unidimensional scale of the 19-item ARAT by Mokken analysis, with the scalability coefficient H = 0.95. Except for the item pinch ball bearing 3rd finger and thumb'', the remaining 18 items have a consistently hierarchical order along the upper extremity function's continuum. In contrast, the Rasch analysis, with a stepwise deletion of misfit items, showed that only 4 items (grasp ball'', grasp block 5 cm(3)'', grasp block 2.5 cm(3)'', and grip tube 1 cm(3)'') fit the Rasch rating scale model's expectations. Conclusion: Our findings indicated that the 19-item ARAT constituted a unidimensional construct measuring upper extremity function in stroke patients. However, the results did not support the premise that the raw sum scores of the ARAT can be transformed into interval Rasch scores. Thus, the raw sum scores of the ARAT can provide information only about order of patients on their upper extremity functional abilities, but not represent each patient's exact functioning.
Resumo:
The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics
Resumo:
This research initiates a study of the mechanics of four roll plate bending and provides a methodology to investigate the process experimentally. To carry out the research a suitable model bender was designed and constructed. The model bender was comprehensively instrumented with ten load cells, three torquemeters and a tachometer. A rudimentary analysis of the four roll pre-bending mode considered the three critical bending operations. The analysis also gave an assessment of the model bender capacity for the design stage. The analysis indicated that an increase in the coefficient of friction in the contact region of the pinch rolls and the plate would reduce the pinch resultant force required to end a plate to a particular bend radius. The mechanisms involved in the four roll plate bending process were investigated and a mathematical model evolved to determine the mechanics of four roll thin plate bending. A theoretical and experimental investigation was conducted for the bending of HP30 aluminium plates in both single and multipass bending modes. The study indicated that the multipass plate bending mechanics of the process varied according to the number of bending passes executed and the step decrement of the anticipated finished bend radius in any two successive passes (i.e. the bending route). Experimental results for single pass bending indicated that the rollers normally exert a higher bending load for the steady-continous bending with the pre-inactive side roll oper?tive. For the pre-bending mode and the steady-continous bending mode with the pre-active side roll operative, the former exerted the higher loads. The single pass results also indicated that the force on the side roll, the torque and power steadily increased as the anticipated bend radius decreased. Theoretical predictions for the plate internal resistance to accomplish finished bend radii of between 2500mm and 500mm for multipass bending HP30 aluminium plates, suggested that there was a certain bending route which would effectively optimise the bender capacity.