907 resultados para Physical-chemical characteristics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interactions of phenyldithioesters with gold nanoparticles (AuNPs) have been studied by monitoring changes in the surface plasmon resonance (SPR), depolarised light scattering, and surface enhanced Raman spectroscopy (SERS). Changes in the SPR indicated that an AuNP-phenyldithioester charge transfer complex forms in equilibrium with free AuNPs and phenyldithioester. Analysis of the Langmuir binding isotherms indicated that the equilibrium adsorption constant, Kads, was 2.3 ± 0.1 × 106 M−1, which corresponded to a free energy of adsorption of 36 ± 1 kJ mol−1. These values are comparable to those reported for interactions of aryl thiols with gold and are of a similar order of magnitude to moderate hydrogen bonding interactions. This has significant implications in the application of phenyldithioesters for the functionalization of AuNPs. The SERS results indicated that the phenyldithioesters interact with AuNPs through the C═S bond, and the molecules do not disassociate upon adsorption to the AuNPs. The SERS spectra are dominated by the portions of the molecule that dominate the charge transfer complex with the AuNPs. The significance of this in relation to the use of phenyldithioesters for molecular barcoding of nanoparticle assemblies is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Previously published predictions of the variation in wave speed with angle are reviewed. Predictions that allow tortuosity to be angle dependent but assume isotropic elasticity compare well with available data on wave speeds at large angles but less well for small angles near the normal to the trabeculae. Claims for predictions that only include angle-dependence in elasticity are found to be misleading. Audio-frequency data obtained at audio-frequencies in air-filled bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions that allow for either angle dependent tortuosity or angle dependent elasticity or both are compared with existing data for all angles and porosities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceramic membranes are of particular interest in many industrial processes due to their ability to function under extreme conditions while maintaining their chemical and thermal stability. Major structural deficiencies under conventional fabrication approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using larger titanate nanofibres and smaller boehmite nanofibres. This yields a radical change in membrane texture. The differences in the porous supports have no substantial influences on the texture of resulting membranes. The membranes with top layer of nanofibres coated on different porous supports by spin-coating method have similar size of the filtration pores, which is in a range of 10–100 nm. These membranes are able to effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. The retention can attain more than 95%, while maintaining a high flux rate about 900 L m-2 h. The calcination after spin-coating creates solid linkages between the fibres and between fibres and substrate, in addition to convert boehmite into -alumina nanofibres. This reveals a new direction in membrane fabrication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is a study of naturally occurring radioactive materials (NORM) activity concentration, gamma dose rate and radon (222Rn) exhalation from the waste streams of large-scale onshore petroleum operations. Types of activities covered included; sludge recovery from separation tanks, sludge farming, NORM storage, scaling in oil tubulars, scaling in gas production and sedimentation in produced water evaporation ponds. Field work was conducted in the arid desert terrain of an operational oil exploration and production region in the Sultanate of Oman. The main radionuclides found were 226Ra and 210Pb (238U - series), 228Ra and 228Th (232Th - series), and 227Ac (235U - series), along with 40K. All activity concentrations were higher than the ambient soil level and varied over several orders of magnitude. The range of gamma dose rates at a 1 m height above ground for the farm treated sludge had a range of 0.06 0.43 µSv h 1, and an average close to the ambient soil mean of 0.086 ± 0.014 µSv h 1, whereas the untreated sludge gamma dose rates had a range of 0.07 1.78 µSv h 1, and a mean of 0.456 ± 0.303 µSv h 1. The geometric mean of ambient soil 222Rn exhalation rate for area surrounding the sludge was mBq m 2 s 1. Radon exhalation rates reported in oil waste products were all higher than the ambient soil value and varied over three orders of magnitude. This study resulted in some unique findings including: (i) detection of radiotoxic 227Ac in the oil scales and sludge, (ii) need of a new empirical relation between petroleum sludge activity concentrations and gamma dose rates, and (iii) assessment of exhalation of 222Rn from oil sludge. Additionally the study investigated a method to determine oil scale and sludge age by the use of inherent behaviour of radionuclides as 228Ra:226Ra and 228Th:228Ra activity ratios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cardiovascular assist devices are tested in mock circulation loops (MCLs) prior to animal and clinical testing. These MCLs rely on characteristics such as pneumatic parameters to create pressure and flow, and pipe dimensions to replicate the resistance, compliance and fluid inertia of the natural cardiovascular system. A mathematical simulation was developed in SIMULINK to simulate an existing MCL. Model validation was achieved by applying the physical MCL characteristics to the simulation and comparing the resulting pressure traces. These characteristics were subsequently altered to improve and thus predict the performance of a more accurate physical system. The simulation was successful in simulating the physical mock circulation loop, and proved to be a useful tool in the development of improved cardiovascular device test rigs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrocarbon spills on roads are a major safety concern for the driving public and can have severe cost impacts both on pavement maintenance and to the economy through disruption to services. The time taken to clean-up spills and re-open roads in a safe driving condition is an issue of increasing concern given traffic levels on major urban arterials. Thus, the primary aim of the research was to develop a sorbent material that facilitates rapid clean-up of road spills. The methodology involved extensive research into a range of materials (organic, inorganic and synthetic sorbents), comprehensive testing in the laboratory, scale-up and field, and product design (i.e. concept to prototype). The study also applied chemometrics to provide consistent, comparative methods of sorbent evaluation and performance. In addition, sorbent materials at every stage were compared against a commercial benchmark. For the first time, the impact of diesel on asphalt pavement has been quantified and assessed in a systematic way. Contrary to conventional thinking and anecdotal observations, the study determined that the action of diesel on asphalt was quite rapid (i.e. hours rather than weeks or months). This significant finding demonstrates the need to minimise the impact of hydrocarbon spills and the potential application of the sorbent option. To better understand the adsorption phenomenon, surface characterisation techniques were applied to selected sorbent materials (i.e. sand, organo-clay and cotton fibre). Brunauer Emmett Teller (BET) and thermal analysis indicated that the main adsorption mechanism for the sorbents occurred on the external surface of the material in the diffusion region (sand and organo-clay) and/or capillaries (cotton fibre). Using environmental scanning electron microscopy (ESEM), it was observed that adsorption by the interfibre capillaries contributed to the high uptake of hydrocarbons by the cotton fibre. Understanding the adsorption mechanism for these sorbents provided some guidance and scientific basis for the selection of materials. The study determined that non-woven cotton mats were ideal sorbent materials for clean-up of hydrocarbon spills. The prototype sorbent was found to perform significantly better than the commercial benchmark, displaying the following key properties: • superior hydrocarbon pick-up from the road pavement; • high hydrocarbon retention capacity under an applied load; • adequate field skid resistance post treatment; • functional and easy to use in the field (e.g. routine handling, transportation, application and recovery); • relatively inexpensive to produce due to the use of raw cotton fibre and simple production process; • environmentally friendly (e.g. renewable materials, non-toxic to environment and operators, and biodegradable); and • rapid response time (e.g. two minutes total clean-up time compared with thirty minutes for reference sorbents). The major outcomes of the research project include: a) development of a specifically designed sorbent material suitable for cleaning up hydrocarbon spills on roads; b) submission of patent application (serial number AU2005905850) for the prototype product; and c) preparation of Commercialisation Strategy to advance the sorbent product to the next phase (i.e. R&D to product commercialisation).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coal seam gas (CSG) exploration and development requires the abstraction of significant amounts of water. This is so because gas desorbtion in coal seams takes place only after aquifer pressure has been reduced by prolonged pumping of aquifer water. CSG waters have a specific geochemical signature which is a product of their formation process. These waters have high bicarbonate, high sodium, low calcium, low magnesium, and very low sulphate concentrations. Additionally, chloride concentrations may be high depending on the coal depositional environment. This particular signature is not only useful for exploration purposes, but it also highlights potential environmental issues that can arise as a consequence of CSG water disposal. Since 2002 L&M Coal Seam Gas Ltd and CRL Energy Ltd, have been involved in exploration and development of CSG in New Zealand. Anticipating disposal of CSG waters as a key issue in CSG development, they have been assessing CSG water quality along with exploration work. Coal seam gas water samples from an exploration well in Maramarua closely follow the geochemical signature associated with CSG waters. This has helped to identify CSG potential, while at the same time assessing the chemical characteristics and water generation processes in the aquifer. Neutral pH and high alkalinity suggest that these waters could be easily managed once the sodium and chloride concentrations are reduced to acceptable levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vitro cardiovascular device performance evaluation in a mock circulation loop (MCL) is a necessary step prior to in vivo testing.A MCL that accurately represents the physiology of the cardiovascular system accelerates the assessment of the device’s ability to treat pathological conditions. To serve this purpose, a compact MCL measuring 600 ¥ 600 ¥ 600 mm (L ¥ W¥ H) was constructed in conjunction with a computer mathematical simulation.This approach allowed the effective selection of physical loop characteristics, such as pneumatic drive parameters, to create pressure and flow, and pipe dimensions to replicate the resistance, compliance, and fluid inertia of the native cardiovascular system. The resulting five-element MCL reproduced the physiological hemodynamics of a healthy and failing heart by altering ventricle contractility, vascular resistance/compliance, heart rate, and vascular volume. The effects of interpatient anatomical variability, such as septal defects and valvular disease, were also assessed. Cardiovascular hemodynamic pressures (arterial, venous, atrial, ventricular), flows (systemic, bronchial, pulmonary), and volumes (ventricular, stroke) were analyzed in real time. The objective of this study is to describe the developmental stages of the compact MCL and demonstrate its value as a research tool for the accelerated development of cardiovascular devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bauxite refinery residues (red mud) are derived from the Bayer process by the digestion of crushed bauxite in concentrated sodium hydroxide at elevated temperatures and pressures. This slurry residue, if untreated, is unsuitable for discharge directly into the environment and is usually stored in tailing dams. The liquid portion has the potential for discharge, but requires pre-treatment before this can occur. The seawater neutralisation treatment facilitates a significant reduction in pH and dissolved metal concentrations, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. The hydrotalcite-like compounds, precipitated during seawater neutralisation, also remove a range of transition metals, oxy-anions and other anionic species through a combination of intercalation and adsorption reactions: smaller anions are intercalated into the hydrotalcite matrix, while larger molecules are adsorbed on the particle surfaces. A phenomenon known as ‘reversion’ can occur if the seawater neutralisation process is not properly controlled. Reversion causes an increase in the pH and dissolved impurity levels of the neutralised effluent, rendering it unsuitable for discharge. It is believed that slow dissolution of components of the red mud residue and compounds formed during the neutralisation process are responsible for reversion. This investigation looked at characterising natural hydrotalcite (Mg6Al2(OH)16(CO3)∙4H2O) and ‘Bayer’ hydrotalcite (synthesised using the seawater neutralisation process) using a variety of techniques including X-ray diffraction, infrared and Raman spectroscopy, and thermogravimetric analysis. This investigation showed that Bayer hydrotalcite is comprised of a mixture of 3:1 and 4:1 hydrotalcite structures and exhibited similar chemical characteristic to the 4:1 synthetic hydrotalcite. Hydrotalcite formed from the seawater neutralisation of Bauxite refinery residues has been found not to cause reversion. Other components in red mud were investigated to determine the cause of reversion and this investigation found three components that contributed to reversion: 1) tricalcium aluminate, 2) hydrocalumite and 3) calcium hydroxide. Increasing the amount of magnesium in the neutralisation process has been found to be successful in reducing reversion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solids are widely identified as a carrier of harmful pollutants in stormwater runoff exerting a significant risk to receiving waters. This paper outlines the findings of an in-depth investigation on heavy metal adsorption to solids surfaces. Pollutant build-up samples collected from sixteen road sites in residential, industrial and commercial land uses were separated into four particle size ranges and analysed for a range of physico-chemical parameters and nine heavy metals including Iron (Fe), Aluminum (Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni) and Copper (Cu). High specific surface area (SSA) and total organic carbon (TOC) content in finer particle size ranges was noted, thus confirming strong correlations with heavy metals. Based on their physico-chemical characteristics, two different types of solids originating from traffic and soil sources were identified. Solids generated by traffic were associated with high loads of heavy metals such as Cd and Cr with strong correlation with SSA. This suggested the existence of surface dependent bonds such as cation exchange between heavy metals and solids. In contrast, Fe, Al and Mn which can be attributed to soil inputs showed strong correlation with TOC suggesting strong bonds such as chemsorption. Zn was found to be primarily attached to solids by bonding with the oxides of Fe, Al and Mn. The data analysis also confirmed the predominance of the finer fraction, with 70% of the solids being finer than 150 µm and containing 60% of the heavy metal pollutant load.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, the author proposed and developed gas sensors made of nanostructured WO3 thin film by a thermal evaporation technique. This technique gives control over film thickness, grain size and purity. The device fabrication, nanostructured material synthesis, characterization and gas sensing performance have been undertaken. Three different types of nanostructured thin films, namely, pure WO3 thin films, iron-doped WO3 thin films by co-evaporation and Fe-implanted WO3 thin films have been synthesized. All the thin films have a film thickness of 300 nm. The physical, chemical and electronic properties of these films have been optimized by annealing heat treatment at 300ºC and 400ºC for 2 hours in air. Various analytical techniques were employed to characterize these films. Atomic Force Microscopy and Transmission Electron Microscopy revealed a very small grain size of the order 5-10 nm in as-deposited WO3 films, and annealing at 300ºC or 400ºC did not result in any significant change in grain size. X-ray diffraction (XRD) analysis revealed a highly amorphous structure of as-deposited films. Annealing at 300ºC for 2 hours in air did not improve crystallinity in these films. However, annealing at 400ºC for 2 hours in air significantly improved the crystallinity in pure and iron-doped WO3 thin films, whereas it only slightly improved the crystallinity of iron-implanted WO3 thin film as a result of implantation. Rutherford backscattered spectroscopy revealed an iron content of 0.5 at.% and 5.5 at.% in iron-doped and iron-implanted WO3 thin films, respectively. The RBS results have been confirmed using energy dispersive x-ray spectroscopy (EDX) during analysis of the films using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) revealed significant lowering of W 4f7/2 binding energy in all films annealed at 400ºC as compared with the as-deposited and 300ºC annealed films. Lowering of W 4f7/2 is due to increase in number of oxygen vacancies in the films and is considered highly beneficial for gas sensing. Raman analysis revealed that 400ºC annealed films except the iron-implanted film are highly crystalline with significant number of O-W-O bonds, which was consistent with the XRD results. Additionally, XRD, XPS and Raman analyses showed no evidence of secondary peaks corresponding to compounds of iron due to iron doping or implantation. This provided an understanding that iron was incorporated in the host WO3 matrix rather than as a separate dispersed compound or as catalyst on the surface. WO3 thin film based gas sensors are known to operate efficiently in the temperature range 200ºC-500 ºC. In the present study, by optimizing the physical, chemical and electronic properties through heat treatment and doping, an optimum response to H2, ethanol and CO has been achieved at a low operating temperature of 150ºC. Pure WO3 thin film annealed at 400ºC showed the highest sensitivity towards H2 at 150ºC due to its very small grain size and porosity, coupled with high number of oxygen vacancies, whereas Fe-doped WO3 film annealed at 400ºC showed the highest sensitivity to ethanol at an operating temperature of 150ºC due to its crystallinity, increased number of oxygen vacancies and higher degree of crystal distortions attributed to Fe addition. Pure WO3 films are known to be insensitive to CO, but iron-doped WO3 thin film annealed at 300ºC and 400ºC showed an optimum response to CO at an operating temperature of 150ºC. This result is attributed to lattice distortions produced in WO3 host matrix as a result of iron incorporation as substitutional impurity. However, iron-implanted WO3 thin films did not show any promising response towards the tested gases as the film structure has been damaged due to implantation, and annealing at 300ºC or 400ºC was not sufficient to induce crystallinity in these films. This study has demonstrated enhanced sensing properties of WO3 thin film sensors towards CO at lower operating temperature, which was achieved by optimizing the physical, chemical and electronic properties of the WO3 film through Fe doping and annealing. This study can be further extended to systematically investigate the effects of different Fe concentrations (0.5 at.% to 10 at.%) on the sensing performance of WO3 thin film gas sensors towards CO.