911 resultados para Photography in traffic engineering.
Resumo:
This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances.
Resumo:
Modern buildings are designed to enhance the match between environment, spaces and the people carrying out work, so that the well-being and the performance of the occupants are all in harmony. Building services are systems that facilitate a healthy working environment within which workers productivity can be optimised in the buildings. However, the maintenance of these services is fraught with problems that may contribute to up to 50% of the total life cycle cost of the building. Maintenance support is one area which is not usually designed into the system as this is not common practice in the services industry. The other areas of shortfall for future designs are; client requirements, commissioning, facilities management data and post occupancy evaluation feedback which needs to be adequately planned to capture and document this information for use in future designs. At the University of Reading an integrated approach has been developed to assemble the multitude of aspects inherent in this field. The means records required and measured achievements for the benefit of both building owners and practitioners. This integrated approach can be represented in a Through Life Business Model (TLBM) format using the concept of Integrated Logistic Support (ILS). The prototype TLBM developed utilises the tailored tools and techniques of ILS for building services. This TLBM approach will facilitate the successful development of a databank that would be invaluable in capturing essential data (e.g. reliability of components) for enhancing future building services designs, life cycle costing and decision making by practitioners, in particular facilities managers.
Resumo:
The importance of biological materials has long been recognized from the molecular level to higher levels of organization. Whereas, in traditional engineering, hardness and stiffness are considered desirable properties in a material, biology makes considerable and advantageous use of softer, more pliable resources. The development, structure and mechanics of these materials are well documented and will not be covered here. The purpose of this paper is, however, to demonstrate the importance of such materials and, in particular, the functional structures they form. Using only a few simple building blocks, nature is able to develop a plethora of diverse materials, each with a very different set of mechanical properties and from which a seemingly impossibly large number of assorted structures are formed. There is little doubt that this is made possible by the fact that the majority of biological ‘materials’ or ‘structures’ are based on fibres and that these fibres provide opportunities for functional hierarchies. We show how these structures have inspired a new generation of innovative technologies in the science and engineering community. Particular attention is given to the use of insects as models for biomimetically inspired innovations.
Resumo:
The UK industry has been criticised for being slow to adopt construction process innovations. Research shows that the idiosyncrasies of participants, their roles in the system and the contextual differences between sections of the industry make this a highly complex problem. There is considerable evidence that informal social networks play a key role in diffusion of innovations. The aim is to identify informal communication networks of project participants and the role these play in the diffusion of construction innovations. The characteristics of this network will be analysed in order to understand how they can be used to accelerate innovation diffusion within and between projects. Social Network Analysis is used to determine informal communication routes. Control and experiment case study projects are used within two different organizations. This allows informal communication routes concerning innovations to be mapped, whilst testing if the informal routes can facilitate diffusion. Analysis will focus upon understanding the combination of informal strong and weak ties, and how these impede or facilitate the diffusion of the innovation. Initial work suggests the presence of an informal communication network. Actors within this informal network, and the organization's management are unaware of its' existence and their informal roles within it. Thus, the network remains an untapped medium regarding innovation diffusion. It is proposed that successful innovation diffusion is dependent upon understanding informal strong and weak ties, at project, organization and industry level.
Resumo:
The work reported in this paper proposes 'Intelligent Agents', a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.
Resumo:
Lighting and small power will typically account for more than half of the total electricity consumption in an office building. Significant variations in electricity used by different tenants suggest that occupants can have a significant impact on the electricity demand for these end-uses. Yet current modelling techniques fail to represent the interaction between occupant and the building environment in a realistic manner. Understanding the impact of such behaviours is crucial to improve the methodology behind current energy modelling techniques, aiming to minimise the significant gap between predicted and in-use performance of buildings. A better understanding of the impact of occupant behaviour on electricity consumption can also inform appropriate energy saving strategies focused on behavioural change. This paper reports on a study aiming to assess the intent of occupants to switch off lighting and appliances when not in use in office buildings. Based on the Theory of Planned Behaviour, the assessment takes the form of a questionnaire and investigates three predictors to behaviour individually: 1) behavioural attitude; 2) subjective norms; 3) perceived behavioural control. The paper details the development of the assessment procedure and discusses preliminary findings from the study. The questionnaire results are compared against electricity consumption data for individual zones within a multi-tenanted office building. Initial results demonstrate a statistically significant correlation between perceived behavioural control and energy consumption for lighting and small power
Resumo:
A theoretical model for predicting the behaviour of membrane distillation by incorporating mass and heat transfer equations has been used to find permeate fluxes, and has been validated experimentally. The model accurately predicts mass and heat transfer. The main work studied the effect of module design using a flat-plate module in laminar flow conditions. Areas of investigation included the use of channels across the membrane surface, decreasing the available membrane surface area, and widening the inlet and outlet channels. The work showed that widening the channels increased the flux. Increased flux was also obtained by the use of channels on the permeate side, though not on the feed side.
Resumo:
We investigate Fréchet differentiability of the scattered field with respect to variation in the boundary in the case of time–harmonic acoustic scattering by an unbounded, sound–soft, one–dimensional rough surface. We rigorously prove the differentiability of the scattered field and derive a characterization of the Fréchet derivative as the solution to a Dirichlet boundary value problem. As an application of these results we give rigorous error estimates for first–order perturbation theory, justifying small perturbation methods that have a long history in the engineering literature. As an application of our rigorous estimates we show that a plane acoustic wave incident on a sound–soft rough surface can produce an unbounded scattered field.
Resumo:
The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.
Resumo:
Students in the architecture, engineering, and construction disciplines are often challenged with visualizing and understanding the complex spatial and temporal relationships involved in designing and constructing three-dimensional (3D) structures. An evolving body of research traces the use of educational computer simulations to enhance student learning experiences through testing real-world scenarios and the development of student decision-making skills. Ongoing research at Pennsylvania State University aims to improve engineering education in construction through interactive construction project learning applications in an immersive virtual reality environment. This paper describes the first- and second-generation development of the Virtual Construction Simulator (VCS), a tool that enables students to simultaneously create and review construction schedules through 3D model interaction. The educational value and utility of VCS was assessed through surveys, focus group interviews, and a student exercise conducted in a construction management class. Results revealed VCS is a valuable and effective four-dimensional (4D) model creation and schedule review application that fosters collaborative work and greater student task focus. This paper concludes with a discussion of the findings and the future development steps of the VCS educational simulation
Resumo:
Purpose: Retinoic acid (RA) is a metabolite of vitamin A that plays a fundamental role in the development and function of the human eye. The purpose of this study was to investigate the effects of RA on the phenotype of corneal stromal keratocytes maintained in vitro for extended periods under serum-free conditions. Methods: Keratocytes isolated from human corneas were cultured up to 21 days in serum-free media supplemented with RA or DMSO vehicle. The effects of RA and of its removal after treatment on cell proliferation and morphology were evaluated. In addition, the expression of keratocyte markers was quantified at the transcriptional and protein levels by quantitative PCR and immunoblotting or ELISA, respectively. Furthermore, the effects of RA on keratocyte migration were tested using scratch assays. Results: Keratocytes cultured with RA up to 10×10-6 M showed enhanced proliferation and stratification, and reduced mobility. RA also promoted the expression of keratocyte-characteristic proteoglycans such as keratocan, lumican, and decorin, and increased the amounts of collagen type-I in culture while significantly reducing the expression of matrix metalloproteases 1, 3, and 9. RA effects were reversible, and cell phenotype reverted to that of control after removal of RA from media. Conclusions: RA was shown to control the phenotype of human corneal keratocytes cultured in vitro by regulating cell behaviour and extracellular matrix composition. These findings contribute to our understanding of corneal stromal biology in health and disease, and may prove useful in optimizing keratocyte cultures for applications in tissue engineering, cell biology, and medicine.
Resumo:
Purpose – Construction projects usually suffer delays, and the causes of these delays and its cost overruns have been widely discussed, the weather being one of the most recurrent. The purpose of this paper is to analyze the influence of climate on standard construction work activities through a case study. Design/methodology/approach – By studying the extent at which some weather variables impede outdoor work from being effectively executed, new maps and tables for planning for delays are presented. In addition, a real case regarding the construction of several bridges in southern Chile is analyzed. Findings – Few studies have thoroughly addressed the influences of major climatic agents on the most common outdoor construction activities. The method detailed here provides a first approximation for construction planners to assess to what extent construction productivity will be influenced by the climate. Research limitations/implications – Although this study was performed in Chile, the simplified method proposed is entirely transferable to any other country, however, other weather or combinations of weather variables could be needed in other environments or countries. Practical implications – The implications will help reducing the negative social, economic and environmental outcomes that usually emerge from project delays. Originality/value – Climatic data were processed using extremely simple calculations to create a series of quantitative maps and tables that would be useful for any construction planner to decide the best moment of the year to start a project and, if possible, where to build it.
Resumo:
Building roofs play a very important role in the energy balance of buildings, especially in summer, when they are hit by a rather high solar irradiance. Depending on the type of finishing layer, roofs can absorb a great amount of heat and reach quite high temperatures on their outermost surface, which determines significant room overheating. However, the use of highly reflective cool materials can help to maintain low outer surface temperatures; this practice may improve indoor thermal comfort and reduce the cooling energy need during the hot season.This technology is currently well known and widely used in the USA, while receiving increasing attention in Europe. In order to investigate the effectiveness of cool roofs as a passive strategy for passive cooling in moderately hot climates, this paper presents the numerical results of a case study based on the dynamic thermal analysis of an existing office building in Catania (southern Italy, Mediterranean area). The results show how the application of a cool paint on the roof can enhance the thermal comfort of the occupants by reducing the operative temperatures of the rooms and to reduce the overall energy needs of the building for space heating and cooling.