967 resultados para Phospholipase a2-like proteins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

αB-crystallin, a member of the small heat shock protein family, possesses chaperone-like function. Recently, it has been shown that a missense mutation in αB-crystallin, R120G, is genetically linked to a desmin-related myopathy as well as to cataracts [Vicart, P., Caron, A., Guicheney, P., Li, A., Prevost, M.-C., Faure, A., Chateau, D., Chapon, F., Tome, F., Dupret, J.-M., et al. (1998) Nat. Genet. 20, 92–95]. By using α-lactalbumin, alcohol dehydrogenase, and insulin as target proteins, in vitro assays indicated that R120G αB-crystallin had reduced or completely lost chaperone-like function. The addition of R120G αB-crystallin to unfolding α-lactalbumin enhanced the kinetics and extent of its aggregation. R120G αB-crystallin became entangled with unfolding α-lactalbumin and was a major portion of the resulting insoluble pellet. Similarly, incubation of R120G αB-crystallin with alcohol dehydrogenase and insulin also resulted in the presence of R120G αB-crystallin in the insoluble pellets. Far and near UV CD indicate that R120G αB-crystallin has decreased β-sheet secondary structure and an altered aromatic residue environment compared with wild-type αB-crystallin. The apparent molecular mass of R120G αB-crystallin, as determined by gel filtration chromatography, is 1.4 MDa, which is more than twice the molecular mass of wild-type αB-crystallin (650 kDa). Images obtained from cryoelectron microscopy indicate that R120G αB-crystallin possesses an irregular quaternary structure with an absence of a clear central cavity. The results of this study show, through biochemical analysis, that an altered structure and defective chaperone-like function of αB-crystallin are associated with a point mutation that leads to a desmin-related myopathy and cataracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-molecule force spectroscopy reveals unfolding of domains in titin on stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single-domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively, whereas stretching of non-two-state folders occurs through intermediates. The stretching rates of individual molecules show great variations reflecting the heterogeneity of force-induced unfolding pathways. The approach to the stretched state occurs in a stepwise “quantized” manner. Unfolding dynamics and forces required to stretch proteins depend sensitively on topology. The unfolding rates increase exponentially with force f till an optimum value, which is determined by the barrier to unfolding when f = 0. A mapping of these results to proteins shows qualitative agreement with force-induced unfolding of Ig-like domains in titin. We show that single-molecule force spectroscopy can be used to map the folding free energy landscape of proteins in the absence of denaturants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several regulators of G protein signaling (RGS) proteins contain a G protein γ-subunit-like (GGL) domain, which, as we have shown, binds to Gβ5 subunits. Here, we extend our original findings by describing another GGL-domain-containing RGS, human RGS6. When RGS6 is coexpressed with different Gβ subunits, only RGS6 and Gβ5 interact. The expression of mRNA for RGS6 and Gβ5 in human tissues overlaps. Predictions of α-helical and coiled-coil character within GGL domains, coupled with measurements of Gβ binding by GGL domain mutants, support the contention that Gγ-like regions within RGS proteins interact with Gβ5 subunits in a fashion comparable to conventional Gβ/Gγ pairings. Mutation of the highly conserved Phe-61 residue of Gγ2 to tryptophan, the residue present in all GGL domains, increases the stability of the Gβ5/Gγ2 heterodimer, highlighting the importance of this residue to GGL/Gβ5 association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD26 is a T cell activation antigen known to bind adenosine deaminase and have dipeptidyl peptidase IV activity. Cross-linking of CD26 and CD3 with immobilized mAbs can deliver a costimulatory signal that contributes to T cell activation. Our earlier studies revealed that cross-linking of CD26 induces its internalization, the phosphorylation of a number of proteins involved in the signaling pathway, and subsequent T cell proliferation. Although these findings suggest the importance of internalization in the function of CD26, CD26 has only 6 aa residues in its cytoplasmic region with no known motif for endocytosis. In the present study, we have identified the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGFIIR) as a binding protein for CD26 and that mannose 6-phosphate (M6P) residues in the carbohydrate moiety of CD26 are critical for this binding. Activation of peripheral blood T cells results in the mannose 6 phosphorylation of CD26. In addition, the cross-linking of CD26 with an anti-CD26 antibody induces not only capping and internalization of CD26 but also colocalization of CD26 with M6P/IGFIIR. Finally, both internalization of CD26 and the T cell proliferative response induced by CD26-mediated costimulation were inhibited by the addition of M6P, but not by glucose 6-phosphate or mannose 1-phosphate. These results indicate that internalization of CD26 after cross-linking is mediated in part by M6P/IGFIIR and that the interaction between mannose 6-phosphorylated CD26 and M6P/IGFIIR may play an important role in CD26-mediated T cell costimulatory signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earth’s biota produces vast quantities of polymerized silica at ambient temperatures and pressures by mechanisms that are not understood. Silica spicules constitute 75% of the dry weight of the sponge Tethya aurantia, making this organism uniquely tractable for analyses of the proteins intimately associated with the biosilica. Each spicule contains a central protein filament, shown by x-ray diffraction to exhibit a highly regular, repeating structure. The protein filaments can be dissociated to yield three similar subunits, named silicatein α, β, and γ. The molecular weights and amino acid compositions of the three silicateins are similar, suggesting that they are members of a single protein family. The cDNA sequence of silicatein α, the most abundant of these subunits, reveals that this protein is highly similar to members of the cathepsin L and papain family of proteases. The cysteine at the active site in the proteases is replaced by serine in silicatein α, although the six cysteines that form disulfide bridges in the proteases are conserved. Silicatein α also contains unique tandem arrays of multiple hydroxyls. These structural features may help explain the mechanism of biosilicification and the recently discovered activity of the silicateins in promoting the condensation of silica and organically modified siloxane polymers (silicones) from the corresponding silicon alkoxides. They suggest the possibility of a dynamic role of the silicateins in silicification of the sponge spicule and offer the prospect of a new synthetic route to silica and siloxane polymers at low temperature and pressure and neutral pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription factor E2F plays a major role in cell cycle control in mammalian cells. E2F binding sites, which are present in the promoters of a variety of genes required for S phase, shift from a negative to a positive role in transcription at the commitment point, a crucial point in G1 that precedes the G1/S transition. Before the commitment point, E2F activity is repressed by members of the pocket proteins family. This repression is believed to be crucial for the proper control of cell growth. We have previously shown that Rb, the founding member of the pocket proteins family, represses E2F1 activity by recruiting the histone deacetylase HDAC1. Here, we show that the two other members of the pocket proteins family, p107 and p130, also are able to interact physically with HDAC1 in live cells. HDAC1 interacts with p107 and Rb through an “LXCXE”-like motif, similar to that used by viral transforming proteins to bind and inactivate pocket proteins. Indeed, we find that the viral transforming protein E1A competes with HDAC1 for p107 interaction. We also demonstrate that p107 is able to interact simultaneously with HDAC1 and E2F4, suggesting a model in which p107 recruits HDAC1 to repress E2F sites. Indeed, we demonstrate that histone deacetylase activity is involved in the p107- or p130-induced repression of E2F4. Taken together, our data suggest that all members of the E2F family are regulated in early G1 by similar complexes, containing a pocket protein and the histone deacetylase HDAC1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that the sequence-ordering tendencies induced by design into different fast-folding, thermally stable native structures interfere. This interference results in a type of quasiorthogonality between optimal native structures, which divides sequence space into fast-folding, thermally stable families surrounded by slow-folding, low stability shells. A concrete example of this effect is provided by using a simple α carbon type model in which a complete correspondence is established between sequence and structure. It is speculated that gaps can occur in the space of protein-like sequences separating the sequence families and resulting in a mechanism for stability and diversity of protein sequence information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although activation of one seven-transmembrane receptor can influence the response of a separate seven-transmembrane receptor, e.g., the phenomenon of synergism, the underlying mechanism(s) for this signaling process is unclear. The present study investigated communication between two receptors that exhibit classical synergism, e.g., human platelet thrombin and thromboxane A2 receptors. Activation of thrombin receptors caused an increase in ligand affinity of thromboxane A2 receptors. This effect (i) was shown to be specific, since a similar increase in ligand affinity was not caused by ADP or A23187; (ii) did not require cytosolic components, e.g., kinases, proteases, phosphatases, etc., because it occurred in isolated platelet membranes; (iii) was G protein-mediated because it was blocked by an Gαq C terminus antibody; and (iv) was associated with a net increase in Gαq coupling to thromboxane A2 receptors. Collectively, these data provide evidence that seven-transmembrane receptors that share a common Gα subunit can communicate with each other via a redistribution of their G proteins. Thus, activation of thrombin receptors increases Gαq association with thromboxane A2 receptors thereby shifting them to a higher affinity state. This signaling phenomenon, which modulates receptor-ligand affinity, may serve as a molecular mechanism for cellular adaptive processes such as synergism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brome mosaic virus (BMV), a member of the alphavirus-like superfamily of positive-strand RNA viruses, encodes two proteins, 1a and 2a, that interact with each other, with unidentified host proteins, and with host membranes to form the viral RNA replication complex. Yeast expressing 1a and 2a support replication and subgenomic mRNA synthesis by BMV RNA3 derivatives. Using a multistep selection and screening process, we have isolated yeast mutants in multiple complementation groups that inhibit BMV-directed gene expression. Three complementation groups, represented by mutants mab1–1, mab2–1, and mab3–1 (for maintenance of BMV functions), were selected for initial study. Each of these mutants has a single, recessive, chromosomal mutation that inhibits accumulation of positive- and negative-strand RNA3 and subgenomic mRNA. BMV-directed gene expression was inhibited when the RNA replication template was introduced by in vivo transcription from DNA or by transfection of yeast with in vitro transcripts, confirming that cytoplasmic RNA replication steps were defective. mab1–1, mab2–1, and mab3–1 slowed yeast growth to varying degrees and were temperature-sensitive, showing that the affected genes contribute to normal cell growth. In wild-type yeast, expression of the helicase-like 1a protein increased the accumulation of 2a mRNA and the polymerase-like 2a protein, revealing a new level of viral regulation. In association with their other effects, mab1–1 and mab2–1 blocked the ability of 1a to stimulate 2a mRNA and protein accumulation, whereas mab3–1 had elevated 2a protein accumulation. Together, these results show that BMV RNA replication in yeast depends on multiple host genes, some of which directly or indirectly affect the regulated expression and accumulation of 2a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To ascertain the membrane topography of the multi-transmembrane spanning presenilin proteins PS-1 and PS-2, anti-peptide antibodies were raised to several specific amino acid sequences in the two proteins, and, after their specificity was ascertained, the anti-peptide antibodies were used in immunofluorescent labeling of live PS-transfected, cultured DAMI cells, which are impermeable to the antibodies, as well as of their fixed and permeabilized counterparts. In such experiments, antibodies that specifically stain the intact live cells must label epitopes of the PS proteins that are on the exterior face of the plasma membrane whereas those antibodies that do not stain the live cells but do stain the fixed and permeabilized cells must label epitopes that face the cytoplasmic side of the membrane. The results obtained were entirely in accord with the predictions of the seven-transmembrane spanning topography (like that of rhodopsin and the β-adrenergic receptor) and were totally inconsistent with the expectations for either the six- or eight-transmembrane topographies that have been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phototransduction in Limulus photoreceptors involves a G protein-mediated activation of phospholipase C (PLC) and subsequent steps involving InsP3-mediated release of intracellular Ca2+. While exploring the role of calmodulin in this cascade, we found that intracellular injection of Ca2+/calmodulin-binding peptides (CCBPs) strongly inhibited the light response. By chemically exciting the cascade at various stages, we found the primary target of this effect was not in late stages of the cascade but rather at the level of G protein and PLC. That PLCδ1 contains a calmodulin-like structure raised the possibility that PLC might be directly affected by CCBPs. To test this possibility, in vitro experiments were conducted on purified PLC. The activity of this enzyme was strongly inhibited by CCBPs and also inhibited by calmodulin itself. Our results suggest that the calmodulin-like region of PLC has an important role in regulating this enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limitation of water loss and control of gas exchange is accomplished in plant leaves via stomatal guard cells. Stomata open in response to light when an increase in guard cell turgor is triggered by ions and water influx across the plasma membrane. Recent evidence demonstrating the existence of ATP-binding cassette proteins in plants led us to analyze the effect of compounds known for their ability to modulate ATP-sensitive potassium channels (K-ATP) in animal cells. By using epidermal strip bioassays and whole-cell patch-clamp experiments with Vicia faba guard cell protoplasts, we describe a pharmacological profile that is specific for the outward K+ channel and very similar to the one described for ATP-sensitive potassium channels in mammalian cells. Tolbutamide and glibenclamide induced stomatal opening in bioassays and in patch-clamp experiments, a specific inhibition of the outward K+ channel by these compounds was observed. Conversely, application of potassium channel openers such as cromakalim or RP49356 triggered stomatal closure. An apparent competition between sulfonylureas and potassium channel openers occurred in bioassays, and outward potassium currents, previously inhibited by glibenclamide, were partially recovered after application of cromakalim. By using an expressed sequence tag clone from an Arabidopsis thaliana homologue of the sulfonylurea receptor, a 7-kb transcript was detected by Northern blot analysis in guard cells and other tissues. Beside the molecular evidence recently obtained for the expression of ATP-binding cassette protein transcripts in plants, these results give pharmacological support to the presence of a sulfonylurea-receptor-like protein in the guard-cell plasma membrane tightly involved in the outward potassium channel regulation during stomatal movements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NagC and Mlc proteins are homologous transcriptional regulators that control the expression of several phosphotransferase system (PTS) genes in Escherichia coli. NagC represses nagE, encoding the N-acetylglucosamine-specific transporter, while Mlc represses three PTS operons, ptsG, manXYZ and ptsHIcrr, involved in the uptake of glucose. NagC and Mlc can bind to each others operator, at least in vitro. A binding site selection procedure was used to try to distinguish NagC and Mlc sites. The major difference was that all selected NagC binding sites had a G or a C at positions +11/–11 from the centre of symmetry. This is also the case for most native NagC sites, but not the nagE operator, which thus looks like a potential Mlc target. The nagE operator does exhibit a higher affinity for Mlc than NagC, but no regulation of nagE by physiological concentrations of Mlc was detected in vivo. Regulation of wild-type nagE by NagC is achieved because of the chelation effect due to a second high affinity NagC operator covering the nagB promoter. Replacing the A/T at +11/–11 with C/G allows repression by NagC in the absence of the nagB operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taking advantage of the ongoing Dictyostelium genome sequencing project, we have assembled >73 kb of genomic DNA in 15 contigs harbouring 15 genes and one pseudogene of Rho-related proteins. Comparison with EST sequences revealed that every gene is interrupted by at least one and up to four introns. For racC extensive alternative splicing was identified. Northern blot analysis showed that mRNAs for racA, racE, racG, racH and racI were present at all stages of development, whereas racJ and racL were expressed only at late stages. Amino acid sequences have been analysed in the context of Rho-related proteins of other organisms. Rac1a/1b/1c, RacF1/F2 and to a lesser extent RacB and the GTPase domain of RacA can be grouped in the Rac subfamily. None of the additional Dictyostelium Rho-related proteins belongs to any of the well-defined subfamilies, like Rac, Cdc42 or Rho. RacD and RacA are unique in that they lack the prenylation motif characteristic of Rho proteins. RacD possesses a 50 residue C-terminal extension and RacA a 400 residue C-terminal extension that contains a proline-rich region, two BTB domains and a novel C-terminal domain. We have also identified homologues for RacA in Drosophila and mammals, thus defining a new subfamily of Rho proteins, RhoBTB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The downstream prion-like protein (doppel, or Dpl) is a paralog of the cellular prion protein, PrPC. The two proteins have ≈25% sequence identity, but seem to have distinct physiologic roles. Unlike PrPC, Dpl does not support prion replication; instead, overexpression of Dpl in the brain seems to cause a completely different neurodegenerative disease. We report the solution structure of a fragment of recombinant mouse Dpl (residues 26–157) containing a globular domain with three helices and a small amount of β-structure. Overall, the topology of Dpl is very similar to that of PrPC. Significant differences include a marked kink in one of the helices in Dpl, and a different orientation of the two short β-strands. Although the two proteins most likely arose through duplication of a single ancestral gene, the relationship is now so distant that only the structures retain similarity; the functions have diversified along with the sequence.