948 resultados para Phase-transition
Resumo:
The Co(II)-diclofenac complex was evaluated by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The DTA curve profile shows one exothermic peak because of the transition phase of the compound between 170 and 180 A degrees C, which was confirmed by X-ray powder diffractometry. The transition phase behavior was studied by DSC curves at several heating rates of a sample mass between 1 and 10 mg in nitrogen atmosphere and in a crucible with and without a lid. Thus, the kinetic parameters were evaluated using an isoconversional non-linear fitting proposed by Capela and Ribeiro. The results show that the activation energy and pre-exponential factor for the transition phase is dependant on the different experimental conditions. Nevertheless, these results indicate that the kinetic compensation effect shows a relationship between them.
Resumo:
The effect of concentration on the structure of SnO2 colloids in aqueous suspension, on their spatial correlation and on the gelation process was studied by small angle x-ray scattering (SAXS). The shape of the experimental SAXS curves varies with suspension concentration. For diluted suspensions ([SnO2] less than or equal to 0.13 mol L-1), SAXS results indicate the presence of colloidal fractal aggregates with an internal correlation length xi congruent to 20 Angstrom, without any noticeable spatial correlation between them. This suggests that the aggregates are spatially arranged without any significant interaction like in ideal gas structures. For higher concentrations ([SnO2] = 0.16, 0.32, and 0.64 mol L-1), the colloidal aggregates are larger (xi = 24 Angstrom) and exhibit a certain degree of spatial correlation between them. The pair correlation function corresponding to the sol with the highest concentration (0.92 mol L-1) reveals a rather strong short range order between aggregates, characteristic of a fluid-like structure, with an average nearest-neighbor distance between aggregates d(1) = 125 Angstrom and an average second-neighbor distance d(2) = 283 Angstrom. The pair distribution function remains essentially invariant during the sol-gel transition, suggesting that gelation involves the formation of a few points of connection between the aggregates resulting in a gel network constituted by essentially linear chains of clusters..
Resumo:
The dehydration, thermal decomposition and transition phase stage of Zn(II)-diclofenac compoundwere studied by simultaneous TG-DTA and DSC techniques. The TG and DSC curves of this compoundwere obtained with the mass of sample of 2 and 5 mg. Additionally, DSC curves were carried out inopened and closed a-alumina pans under static and nitrogen atmosphere. The DTA and DSC curves showthat this compound possesses exothermic transition phase between 170-180 ºC, which it is irreversible(monotropic reaction). The kinetics study of this transition phase stage was evaluated by DSC undernon-isothermal conditions. The obtained data were evaluated with the isoconversional method, where thevalues of activation energy (Ea/kJmol-1) was plotted in function of the conversion degree (a). The resultsshow that due to mass sample, different activation energies were obtained. From these curves a tendencycan be seen where the plots maintain the same profile for closed lids and almost run parallel to each other.
Resumo:
Prior studies suggest that clients need to actively govern knowledge transfer to vendor staff in offshore outsourcing. In this paper, we analyze longitudinal data from four software maintenance offshore out-sourcing projects to explore why governance may be needed for knowledge transfer and how governance and the individual learning of vendor engineers inter-act over time. Our results suggest that self-control is central to learning, but may be hampered by low levels of trust and expertise at the outset of projects. For these foundations to develop, clients initially need to exert high amounts of formal and clan controls to enforce learning activities against barriers to knowledge sharing. Once learning activities occur, trust and expertise increase and control portfolios may show greater emphases on self-control.
Resumo:
The increasing practice of offshore outsourcing software maintenance has posed the challenge of effectively transferring knowledge to individual software engineers of the vendor. In this theoretical paper, we discuss the implications of two learning theories, the model of work-based learning (MWBL) and cognitive load theory (CLT), for knowledge transfer during the transition phase. Taken together, the theories suggest that learning mechanisms need to be aligned with the type of knowledge (tacit versus explicit), task characteristics (complexity and recurrence), and the recipients’ expertise. The MWBL proposes that learning mechanisms need to include conceptual and practical activities based on the relative importance of explicit and tacit knowledge. CLT explains how effective portfolios of learning mechanisms change over time. While jobshadowing, completion tasks, and supportive information may prevail at the outset of transition, they may be replaced by the work on conventional tasks towards the end of transition.
Resumo:
Cover title.
Resumo:
Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C PVA) of two types of poly (vinyl alcohol) (PVA) and the effect of the type and the concentration of plasticizers on the phase properties of biodegradable films based on blends of gelatin and PVA, using a response-surface methodology. The films were made by casting and the studied properties were their glass (Tg) and melting (Tm) transition temperatures, which were determined by diferential scanning calorimetry (DSC). For the data obtained on the first scan, the fitting of the linear model was statistically significant and predictive only for the second melting temperature. In this case, the most important effect on the second Tm of the first scan was due to the HD of the PVA. In relation to the second scan, the linear model could be fit to Tg data with only two statistically significant parameters. Both the PVA and plasticizer concentrations had an important effect on Tg. Concerning the second Tm of the second scan, the linear model was fit to data with two statistically significant parameters, namely the HD and the plasticizer concentration. But, the most important effect was provoked by the HD of the PVA.
Resumo:
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.
Resumo:
In this work, we investigate the interplay between surface anchoring and finite-size effects on the smectic-isotropic transition in free-standing smectic films. Using an extended McMillan model, we study how a homeotropic anchoring stabilizes the smectic order above the bulk transition temperature. In particular, we determine how the transition temperature depends on the surface ordering and film thickness. We identify a characteristic anchoring for which the transition temperature does not depend on the film thickness. For strong surface ordering, we found that the thickness dependence of the transition temperature can be well represented by a power-law relation. The power-law exponent exhibits a weak dependence on the range of film thicknesses, as well as on the molecular alkyl tail length. Our results reproduce the main experimental findings concerning the layer-thinning transitions in free-standing smectic films.