982 resultados para Personnel development
Resumo:
This series of research vignettes is aimed at sharing current and interesting findings from our team of international Entrepreneurship researchers. In this vignette, Dr Henri Burgers considers some of the factors that can make a difference in managing new product development.
Resumo:
This paper reports on the development of a good practice guide that will offer the higher education sector a framework for safeguarding student learning engagement. The good practice guide and framework are underpinned by a set of principles initially identified as themes in the social justice literature which were refined following the consolidation of data collected from eight selected “good practice” Australasian universities and feedback gathered at various forums and presentations. The good practice guide will provide the sector with examples of institutional wide efforts which respond to national priorities for student retention and will also provide exemplars of institutional practices for each principle to facilitate the uptake of sector-wide good practice. Participants will be provided with the opportunity to discuss the social justice principles, the draft good practice guide and identify the practical applications of the guide within individual institutions.
Resumo:
Purpose: The purpose of this study was to improve the retention of primary healthcare (PHC) nurses through exploring and assessing their quality of work life (QWL) and turnover intention. Design and methods: A cross-sectional survey design was used in this study. Data were collected using a questionnaire comprising four sections (Brooks’ survey of Quality of Nursing Work Life [QNWL], Anticipated Turnover Intention, open-ended questions and demographic characteristics). A convenience sample was recruited from 143 PHC centres in Jazan, Saudi Arabia. A response rate of 87% (n = 508/585) was achieved. The SPSS v17 for Windows and NVivo 8 were used for analysis purposes. Procedures and tests used in this study to analyse the quantitative data were descriptive statistics, t-test, ANOVA, General Linear Model (GLM) univariate analysis, standard multiple regression, and hierarchical multiple regression. Qualitative data obtained from responses to the open-ended questions were analysed using the NVivo 8. Findings: Quantitative findings suggested that PHC nurses were dissatisfied with their work life. Respondents’ scores ranged between 45 and 218 (mean = 139.45), which is lower than the average total score on Brooks’ Survey (147). Major influencing factors were classified under four dimensions. First, work life/home life factors: unsuitable working hours, lack of facilities for nurses, inability to balance work with family needs and inadequacy of vacations’ policy. Second, work design factors: high workload, insufficient workforce numbers, lack of autonomy and undertaking many non-nursing tasks. Third, work context factors: management practices, lack of development opportunities, and inappropriate working environment in terms of the level of security, patient care supplies and unavailability of recreation room. Finally, work world factors: negative public image of nursing, and inadequate payment. More positively, nurses were notably satisfied with their co-workers. Conversely, 40.4% (n = 205) of the respondents indicated that they intended to leave their current employment. The relationships between QWL and demographic variables of gender, age, marital status, dependent children, dependent adults, nationality, ethnicity, nursing tenure, organisational tenure, positional tenure, and payment per month were significant (p < .05). The eta squared test for these demographics indicates a small to medium effect size of the variation in QWL scores. Using the GLM univariate analysis, education level was also significantly related to the QWL (p < .05). The relationships between turnover intention and demographic variables including gender, age, marital status, dependent children, education level, nursing tenure, organisational tenure, positional tenure, and payment per month were significant (p < .05). The eta squared test for these demographics indicates a small to moderate effect size of the variation in the turnover intention scores. Using the GLM univariate analysis, the dependent adults’ variable was also significantly related to turnover intention (p < .05). Turnover intention was significantly related to QWL. Using standard multiple regression, 26% of the variance in turnover intention was explained by the QWL F (4,491), 43.71, p < .001, with R² = .263. Further analysis using hierarchical multiple regression found that the total variance explained by the model as a whole (demographics and QWL) was 32.1%, F (17.433) = 12.04, p < .001. QWL explained an additional 19% of the variance in turnover intention, after controlling for demographic variables, R squared change =.19, F change (4, 433) = 30.190, p < .001. The work context variable makes the strongest unique contribution (-.387) to explain the turnover intention, followed by the work design dimension (-.112). The qualitative findings reaffirmed the quantitative findings in terms of QWL and turnover intention. However, the home life/work life and work world dimensions were of great important to both QWL and turnover intention. The qualitative findings revealed a number of new factors that were not included in the survey questionnaire. These included being away from family, lack of family support, social and cultural aspects, accommodation facilities, transportation, building and infrastructure of PHC, nature of work, job instability, privacy at work, patients and community, and distance between home and workplace. Conclusion: Creating and maintaining a healthy work life for PHC nurses is very important to improve their work satisfaction, reduce turnover, enhance productivity and improve nursing care outcomes. Improving these factors could lead to a higher QWL and increase retention rates and therefore reinforcing the stabilisation of the nursing workforce. Significance of the research: Many countries are examining strategies to attract and retain the health care workforce, particularly nurses. This study identified factors that influence the QWL of PHC nurses as well as their turnover intention. It also determined the significant relationship between QWL and turnover intention. In addition, the present study tested Brooks’ survey of QNWL on PHC nurses for the first time. The qualitative findings of this study revealed a number of new variables regarding QWL and turnover intention of PHC nurses. These variables could be used to improve current survey instruments or to develop new research surveys. The study findings could be also used to develop and appropriately implement plans to improve QWL. This may help to enhance the home and work environments of PHC nurses, improve individual and organisational performance, and increase nurses’ commitment. This study contributes to the existing body of research knowledge by presenting new data and findings from a different country and healthcare system. It is the first of its kind in Saudi Arabia, especially in the field of PHC. It has examined the relationship between QWL and turnover intention of PHC nurses for the first time using nursing instruments. The study also offers a fresh explanation (new framework) of the relationship between QWL and turnover intention among PHC nurses, which could be used or tested by researchers in other settings. Implications for further research: Review of the extant literature reveals little in-depth research on the PHC workforce, especially in terms of QWL and organisational turnover in developing countries. Further research is required to develop a QWL tool for PHC nurses, taking into consideration the findings of the current study along with the local culture. Moreover, the revised theoretical framework of the current study could be tested in further research in other regions, countries or healthcare systems in order to identify its ability to predict the level of PHC nurses’ QWL and their intention to leave. There is a need to conduct longitudinal research on PHC organisations to gain an in-depth understanding of the determents of and changes in QWL and turnover intention of PHC nurses at various points of time. An intervention study is required to improve QWL and retention among PHC nurses using the findings of the current study. This would help to assess the impact of such strategies on reducing turnover of PHC nurses. Focusing on the location of the current study, it would be valuable to conduct another study in five years’ time to examine the percentage of actual turnover among PHC nurses compared with the reported turnover intention in the current study. Further in-depth research would also be useful to assess the impact of the local culture on the perception of expatriate nurses towards their QWL and their turnover intention. A comparative study is required between PHC centres and hospitals as well as the public and private health sector agencies in terms of QWL and turnover intention of nursing personnel. Findings may differ from sector to sector according to variations in health systems, working environments and the case mix of patients.
Resumo:
There has never been a better time to strengthen financial reporting in Fiji. With increased interest shown by prospective companies in capital market participation, the pressing problems in the public sector reporting and accountability and global emphasis on the increasing need to strengthen the corporate governance structure, this is perhaps the opportune time to consider the potential of XBRL.
Resumo:
Cultural tourism and creative industries have intersecting policy agendas and economic interdependencies. Most studies of the creative industries have focused on western countries. Cultural tourism is rarely included. However the arrival of the creative economy and its movement through developing countries has changed the relationship. Supporters of the creative economy now see fit to include tourism. This thesis addresses the development of the creative economy in Malaysia. The thesis conducted case studies on animation and museum sectors in Malaysia. These two case studies provide information on the development of creative economy in Malaysia. The study found that a top-down cultural management approach is being practised but that Malaysia is now influenced by new ideas concerning innovation and technical creativity. The study examined whether or not technical innovation by itself is enough. The reference points here are the Multimedia Super Corridor in Cyberjaya and other similar projects in the region. The museum case study was situated in Malacca. It showed that museums needed to adapt new media and new experiences to remain relevant in today’s world. In applying a case study approach, the thesis made use of interviews with key stakeholders, as well consulting numerous policy documents and web sites. Both case studies imitated similar products and services in the market but added local characteristics. This research project contributes significantly to the existing body of knowledge in the field of creative economy within the context of developing countries. Finally the thesis makes recommendations for Malaysia to better position itself in the regional economy while retaining its distinctive cultural identity.
Resumo:
In the cancer research field, most in vitro studies still rely on two-dimensional (2D) cultures. However, the trend is rapidly shifting towards using a three-dimensional (3D) culture system. This is because 3D models better recapitulate the microenvironment of cells, and therefore, yield cellular and molecular responses that more accurately describe the pathophysiology of cancer. By adopting technology platforms established by the tissue engineering discipline, it is now possible to grow cancer cells in extracellular matrix (ECM)-like environments and dictate the biophysical and biochemical properties of the matrix. In addition, 3D models can be modified to recapitulate different stages of cancer progression for instance from the initial development of tumor to metastasis. Inevitably, to recapitulate a heterotypic condition, comprising more than one cell type, it requires a more complex 3D model. To date, 3D models that are available for studying the prostate cancer (CaP)-bone interactions are still lacking. Therefore, the aim of this study is to establish a co-culture model that allows investigation of direct and indirect CaP-bone interactions. Prior to that, 3D polyethylene glycol (PEG)-based hydrogel cultures for CaP cells were first developed and growth conditions were optimised. Characterization of the 3D hydrogel cultures show that LNCaP cells form a multicellular mass that resembles avascular tumor. In comparison to 2D cultures, besides the difference in cell morphology, the response of LNCaP cells to the androgen analogue (R1881) stimulation is different compared to the cells in 2D cultures. This discrepancy between 2D and 3D cultures is likely associated with the cell-cell contact, density and ligand-receptor interactions. Following the 3D monoculture study, a 3D direct co-culture model of CaP cells and the human tissue engineered bone (hTEBC) construct was developed. Interactions between the CaP cells and human osteoblasts (hOBs) resulted in elevation of Matrix Metalloproteinase 9 (MMP9) for PC-3 cells and Prostate Specific Antigen (PSA) for LNCaP cells. To further investigate the paracrine interaction of CaP cells and (hOBs), a 3D indirect co-culture model was developed, where LNCaP cells embedded within PEG hydrogels were co-cultured with hTEBC. It was found that the cellular changes observed reflect the early event of CaP colonizing the bone site. In the absence of androgens, interestingly, up-regulation of PSA and other kallikreins is also detected in the co-culture compared to the LNCaP monoculture. This non androgenic stimulation could be triggered by the soluble factors secreted by the hOB such as Interleukin-6. There are also decrease in alkaline phosphatase (ALP) activity and down-regulation of genes of the hOB when co-cultured with LNCaP cells that have not been previously described. These genes include transforming growth factor β1 (TGFβ1), osteocalcin and Vimentin. However, no changes to epithelial markers (e.g E-cadherin, Cytokeratin 8) were observed in both cell types from the co-culture. Some of these intriguing changes observed in the co-cultures that had not been previously described have enriched the basic knowledge of the CaP cell-bone interaction. From this study, we have shown evidence of the feasibility and versatility of our established 3D models. These models can be adapted to test various hypotheses for studies pertaining to underlying mechanisms of bone metastasis and could provide a vehicle for anticancer drug screening purposes in the future.
Resumo:
At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub-) disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is the world’s fifth major cereal crop and holds importance as a construction material, food and fodder source. More recently, the potential of this plant as a biofuel source has been noted. Despite its agronomic importance, the use of sorghum production is being constrained by both biotic and abiotic factors. These challenges could be addressed by the use of genetic engineering strategies to complement conventional breeding techniques. However, sorghum is one of the most recalcitrant crops for genetic modification with the lack of an efficient tissue culture system being amongst the chief reasons. Therefore, the aim of this study was to develop an efficient tissue culture system for establishing regenerable embryogenic cell lines, micropropagation and acclimatisation for Sorghum bicolor and use this to optimise parameters for genetic transformation via Agrobacterium-mediated transformation and microprojectile bombardment. Using five different sorghum cultivars, SA281, 296B, SC49, Wray and Rio, numerous parameters were investigated in an attempt to establish an efficient and reproducible tissue culture and transformation system. Using immature embryos (IEs) as explants, regenerable embryogenic cell lines (ECLs) could only be established from cultivars SA281 and 296B. Large amounts of phenolics were produced from IEs of cultivars, SC49, Wary and Rio, and these compounds severely hindered callus formation and development. Cultivar SA281 also produced phenolics during regeneration. Attempts to suppress the production of these compounds in cultivars SA281 and SC49 using activated charcoal, PVP, ascorbic acid, citric acid and liquid filter paper bridge methods were either ineffective or had a detrimental effect on embryogenic callus formation, development and regeneration. Immature embryos sourced during summer were found to be far more responsive in vitro than those sourced during winter. In an attempt to overcome this problem, IEs were sourced from sorghum grown under summer conditions in either a temperature controlled glasshouse or a growth chamber. However, the performance of these explants was still inferior to that of natural summer-sourced explants. Leaf whorls, mature embryos, shoot tips and leaf primordia were found to be unsuitable as explants for establishing ECLs in sorghum cultivars SA281 and 296B. Using the florets of immature inflorescences (IFs) as explants, however, ECLs were established and regenerated for these cultivars, as well as for cultivar Tx430, using callus induction media, SCIM, and regeneration media, VWRM. The best in vitro responses, from the largest possible sized IFs, were obtained using plants at the FL-2 stage (where the last fully opened leaf was two leaves away from the flag leaf). Immature inflorescences could be stored at 25oC for up to three days without affecting their in vitro responses. Compared to IEs, the IFs were more robust in tissue culture and showed responses which were season and growth condition independent. A micropropagation protocol for sorghum was developed in this study. The optimum plant growth regulator (PGR) combination for the micropropagation of in vitro regenerated plantlets was found to be 1.0 mg/L BAP in combination with 0.5 mg/L NAA. With this protocol, cultivars 296B and SA281 produced an average of 57 and 13 off-shoots per plantlet, respectively. The plantlets were successfully acclimatised and developed into phenotypically normal plants that set seeds. A simplified acclimatisation protocol for in vitro regenerated plantlets was also developed. This protocol involved deflasking in vitro plantlets with at least 2 fully-opened healthy leaves and at least 3 roots longer than 1.5 cm, washing the media from the roots with running tap water, planting in 100 mm pots and placing in plastic trays covered with a clear plastic bag in a plant growth chamber. After seven days, the corners of the plastic cover were opened and the bags were completely removed after 10 days. All plantlets were successfully acclimatised regardless of whether 1:1 perlite:potting mix, potting mix, UC mix or vermiculite were used as potting substrates. Parameters were optimised for Agrobacterium-mediated transformation (AMT) of cultivars SA281, 296B and Tx430. The optimal conditions were the use of Agrobacterium strain LBA4404 at an inoculum density of 0.5 OD600nm, heat shock at 43oC for 3 min, use of the surfactant Pluronic F-68 (0.02% w/v) in the inoculation media with a pH of 5.2 and a 3 day co-cultivation period in dark at 22oC. Using these parameters, high frequencies of transient GFP expression was observed in IEs precultured on callus initiation media for 1-7 days as well as in four weeks old IE- and IF-derived callus. Cultivar SA281 appeared very sensitive to Agrobacterium since all tissue turned necrotic within two weeks post-exposure. For cultivar 296B, GFP expression was observed up to 20 days post co-cultivation but no stably transformed plants were regenerated. Using cultivar Tx430, GFP was expressed for up to 50 days post co-cultivation. Although no stably transformed plants of this cultivar were regenerated, this was most likely due to the use of unsuitable regeneration media. Parameters were optimised for transformation by particle bombardment (PB) of cultivars SA281, 296B and Tx430. The optimal conditions were use of 3-7 days old IEs and 4 weeks old IF callus, 4 hour pre- and post-bombardment osmoticum treatment, use of 0.6 µm gold microparticles, helium pressure of 1500 kPa and target distance of 15 cm. Using these parameters for PB, transient GFP expression was observed for up to 14, 30 and 50 days for cultivars SA281, 296B and Tx430, respectively. Further, the use of PB resulted in less tissue necrosis compared to AMT for the respective cultivars. Despite the presence of transient GFP expression, no stably transformed plants were regenerated. The establishment of regenerable ECLs and the optimization of AMT and PB parameters in this study provides a platform for future efforts to develop an efficient transformation protocol for sorghum. The development of GM sorghum will be an important step towards improving its agronomic properties as well as its exploitation for biofuel production.
Resumo:
Plant tissue culture is a technique that exploits the ability of many plant cells to revert to a meristematic state. Although originally developed for botanical research, plant tissue culture has now evolved into important commercial practices and has become a significant research tool in agriculture, horticulture and in many other areas of plant sciences. Plant tissue culture is the sterile culture of plant cells, tissues, or organs under aseptic conditions leading to cell multiplication or regeneration or organs and whole plants. The steps required to develop reliable systems for plant regeneration and their application in plant biotechnology are reviewed in countless books. Some of the major landmarks in the evolution of in vitro techniques are summarised in Table 5.1. In this chapter the current applications of this technology to agriculture, horticulture, forestry and plant breeding are briefly described with specific examples from Australian plants when applicable.
Resumo:
This work focuses on the development of a stand-alone gas nanosensor node, powered by solar energy to track concentration of polluted gases such as NO2, N2O, and NH3. Gas sensor networks have been widely developed over recent years, but the rise of nanotechnology is allowing the creation of a new range of gas sensors [1] with higher performance, smaller size and an inexpensive manufacturing process. This work has created a gas nanosensor node prototype to evaluate future field performance of this new generation of sensors. The sensor node has four main parts: (i) solar cells; (ii) control electronics; (iii) gas sensor and sensor board interface [2-4]; and (iv) data transmission. The station is remotely monitored through wired (ethernet cable) or wireless connection (radio transmitter) [5, 6] in order to evaluate, in real time, the performance of the solar cells and sensor node under different weather conditions. The energy source of the node is a module of polycrystalline silicon solar cells with 410cm2 of active surface. The prototype is equipped with a Resistance-To-Period circuit [2-4] to measure the wide range of resistances (KΩ to GΩ) from the sensor in a simple and accurate way. The system shows high performance on (i) managing the energy from the solar panel, (ii) powering the system load and (iii) recharging the battery. The results show that the prototype is suitable to work with any kind of resistive gas nanosensor and provide useful data for future nanosensor networks.