818 resultados para Permian stratigraphy
Resumo:
The Cenozoic Victoria Land Basin (VLB) stratigraphic section penetrated by CRP-3 is mostly of Early Oligocene age. It contains an array of lithofacies comprising fine-grained mudrocks, interlaminated and interbedded mudrocks/sandstones, mud-rich and mud-poor sandstones, conglomerates and diamctites that are together interpreted as the products of shallow marine to possibly non-marine environments of deposition, affected by the periodic advance and retreat of tidewater glaciers. This lithofacies assemblage can be readily rationalised using the facies scheme designed originally for CRP-2/2A, and published previously. The uppermost 330 metres below sea floor (mbsf) shows a cyclical arrangement of lithofacies also similar to that recognised throughout CRP-2/2A, and interpreted to reflect cyclical variations in relative sea-level driven by ice volume fluctuations ('Motif A'). Between 330 and 480 mbsf, a series of less clearly cyclical units, generally fining-upward but nonetheless incorporating a significant subset of the facies assemblage, has been identified and noted in the Initial Report as 'Motif B' Below 480 mbsf, the section is arranged into a repetitive succession of fining-upward units, each of which comprises dolerite clast conglomerate at the base passing upward into relatively thick intervals of sandstones. The cycles present down 480 mbsf are defined as sequences, each interpreted to record cyclical variation of relative sea-level. The thickness distribution of sequences in CRP-3 provides some insights into the geological variables controlling sediment accumulation in the Early Oligocene section. The uppermost part of the section in CRP-3 comprises two or three thick, complete sequences that show a broadly symmetrical arrangement of lithofacies (similar to Sequences 9-11 in CRP-2/2A). This suggests a period of relatively rapid tectonic subsidence, which allowed preservation of the complete facies cycle. Below Sequence 3, however, is a considerable interval of thin, incomplete and erosionally truncated sequences (4-23), which incorporates both the remainder of Motif A sequences and all Motif B sequences recognised. The thinner and more truncated sequences suggest sediment accumulation under conditions of reduced accommodation, and given the lack of evidence for glacial conditions (see Powell et al., this volume) tends to argue for a period of reduced tectonic subsidence. The section below 480 mbsf consists of a series of fining-upward, conglomerate to sandstone intervals which cannot be readily interpreted in terms of relative sea-level change. A relatively mudrock-rich interval above the basal conglomerate/breccia (782-762 mbsf) may record initial flooding of the basin during early rift subsidence. The lithostratigraphy summarised above has been linked to seismic reflection data using depth conversion techniques (Henrys et al., this volume). The three uppermost reflectors ('o', 'p' and 'q') correlate to the package of thick sequences 1-3, and several deeper reflectors can also be correlated to sequence boundaries. The package of thick Sequences 1-3 shows a sheet-like cross-sectional geometry on seismic reflection lines, unlike the similar package recognised in CRP-2/2A.
Resumo:
Deep Sea Drilling Project Site 563, located on the west flank of the northern Mid-Atlantic Ridge, recovered a long Miocene section from which magnetostratigraphic and isotopic stratigraphy are available. Quantitative analyses of calcareous nannofossil assemblages have been performed in the Lower and Middle Miocene sediments from Site 563. The abundance patterns of the identified species allow us to determine several bioevents for this time interval. The recognized biohorizons, related to the available magnetostratigraphy, provide new data on the biostratigraphic value of many species and on the synchroneity of the events over a wide geographic area. Relations with the oxygen isotope stratigraphy are also reported. Sphenolith distribution is examined in particular detail due to their biostratigraphic importance in the Early Miocene. In particular the recently described species Sphenolithus procerus, Sphenolithus tintinnabulum and Sphenolithus multispinatus can be useful to subdivide the Lower Miocene zones NN2 and NN3. A large variety of Reticulofenestra pseudoumbilicus has been identified within zones NN6 and NN7.
Resumo:
The Tore Seamount is a circular, volcano-like feature 100 km in diameter with its summit at 2200 m water depth and a small, 5000 m deep basin in its interior. It is situated approximately 300 km west of Lisbon and is surrounded by deep abyssal plains. This site with a standard pelagic stratigraphy is the southernmost point where the so-called Heinrich events have so far been recorded. A succession of alternating interglacial/glacial periods reveals a stratigraphic record back to the beginning of isotopic stage 7 (225 kyr). Climatic changes are identifiable by coherent variations in colour, carbonate content and distribution of ice-rafted detritus in the carbonate-free fraction. Inputs of ice-rafted quartz are well defined. Characteristics in common with other sites showing Heinrich layers include a high terrigenous to biogenic ratio, a dramatic decrease in the accumulation rate of foraminifera shells, an increase in dolomite abundance and the occurrence of polar foraminiferal species indicating southwards penetration of cold waters which lead us to consider a wider southeastern extent of the North Atlantic ice-rafted detritus belt than hitherto. If the presently accepted position of the Polar Front is maintained, icebergs must have been swept southwards from the southern boundary of the pack ice in a current merging into the ancestral Canary Current, bringing ice-rafted material to the Tore Seamount. The coincidence of reddish-feldspar, probably derived from the northern Appalachian Triassic red facies, with the transparent quartz suggests at least a partial Labrador source for all the Heinrich layers here, including HL 3. In comparison to other sites in the entire North Atlantic, two exceptions stand out: the absence of HL 5 and the low detritus to biogenics ratio for HL 3. The simultaneous occurrence of these two types of ice-rafted minerals is a new piece in the puzzle of the origin of Heinrich layers.
Resumo:
Collisional and post-collisional volcanic rocks in the Ulubey (Ordu) area at the western edge of the Eastern Pontide Tertiary Volcanic Province (EPTVP) in NE Turkey are divided into four suites; Middle Eocene (49.4-44.6 Ma) aged Andesite-Trachyandesite (AT), Trachyandesite-Trachydacite-Rhyolite (TTR), Trachydacite-Dacite (TD) suites, and Middle Miocene (15.1 Ma) aged Trachybasalt (TB) suite. Local stratigraphy in the Ulubey area starts with shallow marine environment sediments of the Paleocene-Eocene time and then continues extensively with sub-aerial andesitic to rhyolitic and rare basaltic volcanism during Eocene and Miocene time, respectively. Petrographically, the volcanic rocks are composed primarily of andesites/trachyandesites, with minor trachydacites/rhyolites, basalts/trachybasalts and pyroclastics, and show porphyric, hyalo-microlitic porphyric and rarely glomeroporphyric, intersertal, intergranular, fluidal and sieve textures. The Ulubey (Ordu) volcanic rocks indicate magma evolution from tholeiitic-alkaline to calc-alkaline with medium-K contents. Primitive mantle normalized trace element and chondrite normalized rare earth element (REE) patterns show that the volcanic rocks have moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios relative to E-Type MORB and depletion in Nb, Ta and Ti. High Th/Yb ratios indicate parental magma(s) derived from an enriched source formed by mixing of slab and asthenospheric melts previously modified by fluids and sediments from a subduction zone. All of the volcanic rocks share similar incompatible element ratios (e.g., La/Sm, Zr/Nb, La/Nb) and chondrite-normalized REE patterns, indicating that the basic to acidic rocks originated from the same source. The volcanic rocks were produced by the slab dehydration-induced melting of an existing metasomatized mantle source, and the fluids from the slab dehydration introduced significant large ion lithophile element (LILE) and LREE to the source, masking its inherent HFSE-enriched characteristics. The initial 87Sr/86Sr (0.7044-0.7050) and eNd (-0.3 to +3.4) ratios of the volcanics suggest that they originated from an enriched lithospheric mantle source with low Sm/Nd ratios. Integration of the geochemical, petrological and isotopical with regional and local geological data suggest that the Tertiary volcanic rocks from the Ulubey (Ordu) area were derived from an enriched mantle, which had been previously metasomatized by fluids derived from subducted slab during Eocene to Miocene in collisional and post-collisional extension-related geodynamic setting following Late Mesozoic continental collision between the Eurasian plate and the Tauride-Anatolide platform.
Resumo:
Hydrothermal circulation at oceanic spreading ridges causes sea water to penetrate to depths of 2 to 3 km in the oceanic crust where it is heated to ~400 °C before venting at spectacular 'black smokers'. These hydrothermal systems exert a strong influence on ocean chemistry (Edmond et al., 1979, doi:10.1016/0012-821X(79)90061-X), yet their structure, longevity and magnitude remain largely unresolved (Elderfield and Schultz., 1996, doi:10.1146/annurev.earth.24.1.191). The active Transatlantic Geotraverse (TAG) deposit, at 26° N on the Mid-Atlantic Ridge, is one of the largest, oldest and most intensively studied of the massive sulphide mounds that accumulate beneath black-smoker fields. Here we report ages of sulphides and anhydrites from the recently drilled (Humphris et al., 1995, doi:10.1038/377713a0) TAG substrate structures -determined from 234U-230Th systematics analysed by thermal ionization mass spectrometry. The new precise ages combined with existing data (Lalou et al., 1993, doi:10.1029/92JB01898; 1998, doi:10.2973/odp.proc.sr.158.214.1998) show that the oldest material (11,000 to 37,000 years old) forms a layer across the centre of the deposit with younger material (2,300-7,800 years old) both above and below. This stratigraphy confirms that much of the sulphide and anhydrite are precipitated within the mound by mixing of entrained sea water with hydrothermal fluid (James and Elderfield, 1996, doi:10.1130/0091-7613(1996)024<1147:COOFFA>2.3.CO;2). The age distribution is consistent with episodic activity of the hydrothermal system recurring at intervals of up to 2,000 years.