967 resultados para Paperboard mills
Resumo:
A high resolution Fourier transform infrared spectrum of methyleneimine, HN=CH2, has been obtained in the gas phase in the region 700 to 1300 cm−1. The rovibrational line intensities of the three lowest fundamentals ν7 (A′), ν8 (A″), and ν9 (A″) have been simulated including all Coriolis interactions between the three bands, and by fitting the observed spectrum the relative signs and magnitudes of the vibrational transition moments have been determined. All of the available spectroscopic data have been used to determine the harmonic force field of methyleneimine.
Resumo:
Formulas are derived for the quartic anharmonic resonance coefficients observed to be important between C–H stretching and the combination of one quantum of C≡C stretching and two quanta of H–C≡C bending in a number of acetylene molecules. Examples of this resonance are ν3 with ν2+ν4+ν5 in 12C2H2, ν1 with ν2+2ν5 in 13C2H2, and ν1 with ν2+2ν4 in monofluoroacetylene and monochloroacetylene. The coefficients characterizing the resonances in these examples, which we denote K3,245, K1,255, and K1,244, arise from cubic and quartic terms in the anharmonic force field, in the normal coordinate representation, through second order and first order perturbation treatments respectively, where the second order resonances are calculated by a Van Vleck resonance formalism. The experimentally determined values of these coefficients are compared with values calculated from model anharmonic force fields.
Resumo:
Expressions are derived for the Jacobian of the coriolis ζ interaction constants and the centrifugal stretching constants (DJ, DJK, etc.) with respect to the force constants in a vibrating-rotating molecule.
Resumo:
The effects of ℓ-type resonance on rovibrational bands in infrared spectra are reviewed. Observed spectra are compared with computer-simulated spectra obtained by solving the Hamiltonian matrix numerically and calculating the true (perturbed) wavenumber and intensity of each line in the band. The most obvious effects in the spectra are shown to result from intensity perturbations rather than line-shifts; in oblate symmetric tops the Q branch structure near the band center may show anomalies due to ℓ-resonance even at quite low resolution and even when the accidental resonance is not very exact. Numerical values of ℓ-doubling constants are obtained for several cyclopropane bands by comparing observed band contours at about 0.2-cm−1 resolution with computed contours. Although the constants are not determined with great precision, the sign of the ℓ-doubling constants is determined unambiguously.
Resumo:
Computed infrared band contours are presented for the two degenerate fundamentals of the NF3 molecule, using the l-resonance band contour program described by Cartwright and Mills, with values of the vibration-rotation constants determined from the microwave spectrum by Morino and co-workers. Computed contours are presented for both possible signs of the l-doubling constant, and comparison with the observed band contours leads to the conclusion that q3 = −121.4 MHz and q4 = +51.4 MHz.
Resumo:
Comparison between observed and calculated infrared band contours has been made to determine the vibrational transition moment ratio |M10/M9| for the Coriolis interacting ν9 and ν10 perpendicular fundamentals of allene-h4. The ratio obtained is appreciably lower than that of a previous estimate and the result obtained by integrated band intensity measurements of Overend and Crawford. From the best estimate of the ratio, the dipole moment derivatives of the two bands are determined; the value for the weaker band ν9 is subject to a large uncertainty.
Resumo:
The anisotropic and isotropic components of the ν2, ν5 rotation-vibrational Raman bands of 13CH3F were obtained separately. The two upper states are coupled by a strong second-order Coriolis resonance. The anisotropic spectrum was analyzed by means of a program system due to R. Escribano. A contour simulation and a least-squares fit of 233 assigned transitions yielded values for ν5, ΔA5, ΔA2, and Aζ5a, 5b(z). The 13C shifts of ν2 and ν5 were obtained from the isotropic spectrum.
Resumo:
Formulas are obtained for the intensity asymmetry (Herman-Wallis) factors in the ν3 and ν4 fundamentals of methane due to the ζ34 Coriolis interaction. The results are also applicable to the ν3 and ν4 bands of SF6.
Resumo:
Data on the vibrational energy levels and rotational constants of carbon suboxide for the low-wavenumber bending mode ν7 are reviewed, in the ground-state manifold, and in the ν2-, ν3-, ν4-, and ν2 + ν4-state manifolds. Following the procedure developed by Duckett, Mills, and Robiette [J. Mol. Spectrosc. 63, 249 (1976)] the data have been inverted to give the effective bending potential in ν7 for each of these five states. Values are obtained for various other parameters in the effective vibration-rotation Hamiltonian. The potential and rotational constants in ν2 + ν4 are given to a close approximation by linear extrapolation from the ground state through the ν2 and ν4 states.
Resumo:
The microwave spectrum of 1-pyrazoline has been observed from 18 to 40 GHz in the six lowest states of the ring-puckering vibration. It is an a-type spectrum of a near oblate asymmetric top. Each vibrational state has been fitted to a separate effective Hamiltonian, and the vibrational dependence of both the rotational constants and the quartic centrifugal distortion constants has been observed and analyzed. The v = 0 and 1 states have also been analyzed using a coupled Hamiltonian; this gives consistent results, with an improved fit to the high J data. The preferred choice of Durig et al. [J. Chem. Phys. 52, 6096 (1970)] for the ring-puckering potential is confirmed as essentially correct, but the A and B inertial axes are shown to be interchanged from those assumed by Durig et al. in their analysis of the mid-infrared spectrum.
Resumo:
The Fourier-transform spectrum of CH3F from 2800 to 3100 cm−1, obtained by Guelachvili in Orsay at a resolution of about 0.003 cm−1, was analyzed. The effective Hamiltonian used contained all symmetry allowed interactions up to second order in the Amat-Nielsen classification, together with selected third-order terms, amongst the set of nine vibrational basis functions represented by the states ν1(A1), ν4(E), 2ν2(A1), ν2 + ν5(E), 2ν50(A1), and 2ν5±2(E). A number of strong Fermi and Coriolis resonances are involved. The vibrational Hamiltonian matrix was not factorized beyond the requirements of symmetry. A total of 59 molecular parameters were refined in a simultaneous least-squares analysis to over 1500 upper-state energy levels for J ≤ 20 with a standard deviation of 0.013 cm−1. Although the standard deviation remains an order of magnitude greater than the precision of the measurements, this work breaks new ground in the simultaneous analysis of interacting symmetric top vibrational levels, in terms of the number of interacting vibrational states and the number of parameters in the Hamiltonian.