823 resultados para PLASMODIUM-FALCIPARUM MALARIA
Resumo:
Malaria control strategies are more likely to be successful if groups at high risk can be accurately predicted. Given that mosquitoes have an obligate aquatic phase we were interested in determining how vector larval abundance relates to the spatial distribution of human malaria infection. We examined the relationship between malaria parasite prevalence and distance from vector larval habitat, and vector larval abundance and distance from human habitation, in separate studies in rural, low-endemic areas of the Philippines. Parasite prevalence among symptomatic patients was significantly higher among those living in proximity ( less than or equal to 50 m) to potential larval habitats of the major vector, Anopheles flavirostris (adjusted odds ratio [AOR] 2.64, P = 0.02 and AOR 3.43, P = 0.04). A larval survey of A. flavirostris revealed a higher density of early and late instars near human habitation (adjusted P < 0.05). The results suggest that larvae are associated with human habitation, thereby reinforcing malaria risk in people living close to larval habitats. This has implications for understanding the interaction between vectors, hosts, and parasites, and the potential for success of localized malaria control measures.
Resumo:
Objectives: To describe the tolerability of mefloquine in Australian soldiers for malaria prophylaxis, including a comparison with doxycycline. Design: Open-label, prospective study and cross-sectional questionnaire and interview. Setting and participants: Two contingents of Australian soldiers, each deployed to East Timor for peacekeeping duties over a 6-month period (April 2001-October 2001 and October 2001-May 2002). Outcome measures: Withdrawals during the study; adverse events relating to mefloquine prophylaxis; willingness to use mefloquine again on deployment. Results: Of 1157 soldiers starting on mefloquine, 75 (6.5%) withdrew because of adverse responses to the drug. There were three serious adverse events of a neuropsychiatric nature, possibly relating to mefloquine. Fifty-seven per cent of soldiers using mefloquine prophylaxis reported at least one adverse event, compared with 56% using doxycycline. The most commonly reported adverse effects of both drugs were sleep disturbance, headache, tiredness and nausea. Of the 968 soldiers still taking mefloquine at the end of their deployments, 94% indicated they would use mefloquine again. Of 388 soldiers taking doxycycline prophylaxis who were deployed with the first mefloquine study contingent, 89% indicated they would use doxycycline again. Conclusions: Mefloquine was generally well tolerated by Australian soldiers and should continue to be used for those intolerant of doxycycline.
Resumo:
Allozyme and molecular sequence data from the malaria vector Anopheles flavirostris (Ludlow) (Diptera: Culicidae) were analysed from 34 sites throughout the Philippines, including the type locality, to test the hypothesis that this taxon is a single panmictic species. A finer-scaled allozyme study, of mainly Luzon samples, revealed no fixed genetic differences in sympatric sites and only low levels of variation. We obtained data from partial sequences for the internal transcribed spacer 2 (ITS2) (483 bp), the third domain (D3) (330 bp) of the 28S ribosomal DNA subunit and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (261 bp). No sequence variation was observed for ITS2, only a one base pair difference was observed between Philippine and Indonesian D3 sequences and An. flavirostris sequences were unique, confirming their diagnostic value for this taxon. Sixteen COI haplotypes were identified, giving 25 parsimony informative sites. Neighbour-Joining, Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of COI sequences for An. flavirostris and outgroup taxa revealed strong branch support for the monophyly of An. flavirostris, thus confirming that Philippine populations of this taxon comprise a single separate species within the Minimus Subgroup of the Funestus Group. Variation in the behaviour of An. flavirostris is likely to be intraspecific rather than interspecific in origin. © 2006 The Royal Entomological Society.
Resumo:
Ultrasonics offers the possibility of developing sophisticated fluid manipulation tools in lab-on-a-chip technologies. Here we demonstrate the ability to shape ultrasonic fields by using phononic lattices, patterned on a disposable chip, to carry out the complex sequence of fluidic manipulations required to detect the rodent malaria parasite Plasmodium berghei in blood. To illustrate the different tools that are available to us, we used acoustic fields to produce the required rotational vortices that mechanically lyse both the red blood cells and the parasitic cells present in a drop of blood. This procedure was followed by the amplification of parasitic genomic sequences using different acoustic fields and frequencies to heat the sample and perform a real-time PCR amplification. The system does not require the use of lytic reagents nor enrichment steps, making it suitable for further integration into lab-on-a-chip point-of-care devices. This acoustic sample preparation and PCR enables us to detect ca. 30 parasites in a microliter-sized blood sample, which is the same order of magnitude in sensitivity as lab-based PCR tests. Unlike other lab-on-a-chip methods, where the sample moves through channels, here we use our ability to shape the acoustic fields in a frequency-dependent manner to provide different analytical functions. The methods also provide a clear route toward the integration of PCR to detect pathogens in a single handheld system.