989 resultados para PHOSPHORUS
Resumo:
To investigate the variation in quality of 'Hass' avocado fruit within an orchard, fruit were harvested at commercial maturity from 15 'Hass' trees of similar appearance, growing in three adjacent rows on the same soil type, and receiving similar management. Fruit were harvested at commercial maturity, and either ripened at 22 degreesC or stored at 2 or 7 degreesC for 3 or 5 weeks and then ripened. Significant positive correlations (based, on the mean for each datum tree) were noted between fruit flesh calcium (Ca) and magnesium (Mg) concentrations and the (Ca + Mg)/potassium ratio, and the number of days for the fruit to reach the eating ripe stage (DTR). Negative correlations were also observed between these minerals and anthracnose and mesocarp discolouration (MD) severity. Negative correlations were observed between fruit potassium (K) and phosphorus (P) concentrations and DTR. Fruit from trees with high fruit yield were generally smaller, with lower anthracnose and MD severity, ripened more slowly, and had higher flesh Ca concentrations. It is likely that cultural practices that maintain moderate to high fruit yield and reduce variation in yield will improve avocado fruit quality and reduce variability in quality. Since the main differences between adjacent trees in this trial were the seedling rootstocks of unknown origin, it is suggested that rootstocks can have a significant impact on avocado yield and fruit quality. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A field experiment was conducted to study the effect of micronutrients, zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), boron (13) and a commercial fritted micronutrient product called Zarzameen, on the yield and the yield components of wheat (Triticum aestivum L.), in the Peshawar valley, Pakistan. Different combinations of Zn, Cu. Fe. Mn, B, and Zarzameen were applied at the rate of 4.0, 2.0, 5.0, 2.0, 1.0 kg ha(-1) and 1.0 kg ha(-1), respectively, along with a basal dose of 100 kg ha(-1) nitrogen(N), 75 kg ha(-1) phosphorus (P) and 50 kg ha(-1) potassium (K). The fertilizer treatments (macro- and micronutrients) increased wheat dry matter, grain yield, and straw yield significantly over an unfertilized control. Soil tests for B and Zn were increased both at boot and harvesting stage, and Fe at boot stage, with the addition of micronutrients. Plants without B had showed classical B deficiency symptoms at grain formation stage, but not at vegetative stage. Boron concentration in the dry matter of wheat plants increased with the addition of the B fertilizer in the soil. Boron deficiency was not observed in plants containing >4 mg B kg(-1) at the boot stage, or in soils containing > 1.4 mg kg(-1) hot water soluble B.
Resumo:
A long-term experiment was conducted to compare the effects of flowing and still water on growth, and the relationship between water flow and nutrients, in Aponogeton elongatus, a submerged aquatic macrophyte. A. elongatus plants were grown for 23 weeks with three levels of nutrition (0, 0.5 and 1g Osmocote Plus(R) fertiliser pot(-1)) in aquaria containing stirred or unstirred water. Fertilized plants grew much better than non-fertilized. The highest fertilizer level produced 29% wider leaves and 58% higher total dry weight in stirred water. Stirred water increased leaf area by 40% and tuber size by 81%, but only with the highest level of nutrition. These results suggest that this plant depends on its roots for mineral uptake, rather than from the open water, and the major limitation to growth in still water is the supply of dissolved inorganic carbon. It was the combined effects of nutrient availability and stirring that produced the strongest response in plant growth, morphology and composition. This study provides some explanation for the observations of others that these plants grow best in creeks or river systems with permanently flowing water.
Resumo:
Quantification of calcium in the cuticle of the fly larva Exeretonevra angustifrons was undertaken at the micron scale using wavelength dispersive X-ray microanalysis, analytical standards, and a full matrix correction. Calcium and phosphorus were found to be present in the exoskeleton in a ratio that indicates amorphous calcium phosphate. This was confirmed through electron diffraction of the calcium-containing tissue. Due to the pragmatic difficulties of measuring light elements, it is not uncommon in the field of entomology to neglect the use of matrix corrections when performing microanalysis of bulk insect specimens. To determine, firstly, whether such a strategy affects the outcome and secondly, which matrix correction is preferable, phi-rho (z) and ZAF matrix corrections were contrasted with each other and without matrix correction. The best estimate of the mineral phase was found to be given by using the phi-rho (z) correction. When no correction was made, the ratio of Ca to P fell outside the range for amorphous calcium phosphate, possibly leading to flawed interpretation of the mineral form when used on its own.
Resumo:
Relationships between mineral uptake and tobacco shoot organogenesis were investigated during three morphogenic phases: phase 1, days 0-10, pre-meristem formation; phase 2, days 10-20, meristem initiation and formation; and phase 3, days 20-35, growth and differentiation of induced meristems into leafy shoots. The mineral content of both shoot-forming (SF) and non-shoot-forming (NSF) media was examined over the 35-day culture period. Both SF and NSF explants rapidly consumed iron during phase 1. Nitrate uptake in SF explants was high and independent of explant growth during phases 1 and 2, but greatest and strongly correlated with growth during phase 3. Phosphorus uptake was highest in SF explants during phases 2 and 3, and correlated with explant growth. Uptake of potassium, calcium and sulphur was strongly associated with explant growth during phase 3 whereas magnesium uptake was only poorly correlated with growth. Results from this study indicate that particular minerals may have an important role in regulating development as well as generally supporting growth.
Resumo:
Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighboring phosphorus donor electron states in silicon [B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002); Phys. Rev. B 66, 115201 (2002)]. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighboring donors that have been implanted into the silicon substrate using an 15 keV ion beam in the so-called top down fabrication scheme for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller, Hu, and Das Sarma.
Resumo:
Complete biological nutrient removal (BNR) in a single tank, sequencing batch reactor (SBR) process, is demonstrated here at full-scale on a typical domestic wastewater. The unique feature of the UniFed process is the introduction of the influent into the settled sludge blanket during the settling and decant periods of the SBR operation. This achieves suitable conditions for denitrification and anaerobic phosphate release which is critical to successful biological phosphorus removal, It also achieves a selector effect, which helps in generating a compact, well settling biomass in the reactor. The results of this demonstration show that it is possible to achieve well over 90% removal of GOD, nitrogen and phosphorus in such a process. Effluent quality achieved over a six-month operating period directly after commissioning was: 29 mg/l GOD, 0.5 mg/l NH4-N, 1.5 mg/l NOx-N and 1.5 mg/l PO4-P (50%-iles of daily samples). During an 8-day, intensive sampling period, the effluent BOD5 was
Resumo:
Two laboratory-scale sequencing batch reactors (SBRs) were operated for enhanced biological phosphorus removal (EBPR) in alternating anaerobic-aerobic or alternating anaerobic-anoxic modes, respectively. Polyphosphate-accumulating organisms (PAOs) were enriched in the anaerobic-aerobic SBR and denitrifying PAOs (DPAOs) were enriched in the anaerobic-aerobic SBR. Fluorescence in situ hybridization (FISH) demonstrated that the well-known PAO, Candidatus Accumulibacter phosphatis was abundant in both SBRs, and post-FISH chemical staining with 4,6-diamidino-2-phenylindol (DAPI) confirmed that they accumulated polyphosphate. When the anaerobic-anoxic SBR enriched for DPAOs was converted to anaerobic-aerobic operation, aerobic uptake of phosphorus by the resident microbial community occurred immediately. However, when the anaerobic-aerobic SBR enriched for PAOs was exposed to one cycle with anoxic rather than aerobic conditions, a 5-h lag period elapsed before phosphorus uptake proceeded. This anoxic phosphorus-uptake lag phase was not observed in the subsequent anaerobic-aerobic cycle. These results demonstrate that the PAOs that dominated the anaerobic-aerobic SBR biomass were the same organisms as the DPAOs enriched under anaerobic-anoxic conditions. (C) 2003 Wiley Periodicals, Inc.
Resumo:
An increasing number of studies shows that the glycogen-accumulating organisms (GAOs) can survive and may indeed proliferate under the alternating anaerobic/aerobic conditions found in EBPR systems, thus forming a strong competitor of the polyphosphate-accumulating organisms (PAOs). Understanding their behaviors in a mixed PAO and GAO culture under various operational conditions is essential for developing operating strategies that disadvantage the growth of this group of unwanted organisms. A model-based data analysis method is developed in this paper for the study of the anaerobic PAO and GAO activities in a mixed PAO and GAO culture. The method primarily makes use of the hydrogen ion production rate and the carbon dioxide transfer rate resulting from the acetate uptake processes by PAOs and GAOs, measured with a recently developed titration and off-gas analysis (TOGA) sensor. The method is demonstrated using the data from a laboratory-scale sequencing batch reactor (SBR) operated under alternating anaerobic and aerobic conditions. The data analysis using the proposed method strongly indicates a coexistence of PAOs and GAOs in the system, which was independently confirmed by fluorescent in situ hybridization (FISH) measurement. The model-based analysis also allowed the identification of the respective acetate uptake rates by PAOs and GAOs, along with a number of kinetic and stoichiometric parameters involved in the PAO and GAO models. The excellent fit between the model predictions and the experimental data not involved in parameter identification shows that the parameter values found are reliable and accurate. It also demonstrates that the current anaerobic PAO and GAO models are able to accurately characterize the PAO/GAO mixed culture obtained in this study. This is of major importance as no pure culture of either PAOs or GAOs has been reported to date, and hence the current PAO and GAO models were developed for the interpretation of experimental results of mixed cultures. The proposed method is readily applicable for detailed investigations of the competition between PAOs and GAOs in enriched cultures. However, the fermentation of organic substrates carried out by ordinary heterotrophs needs to be accounted for when the method is applied to the study of PAO and GAO competition in full-scale sludges. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Glycogen-accumulating organisms (GAO) have the potential to directly compete with polyphosphate-accumulating organisms (PAO) in EBPR systems as both are able to take up VFA anaerobically and grow on the intracellular storage products aerobically. Under anaerobic conditions GAO hydrolyse glycogen to gain energy and reducing equivalents to take up VFA and to synthesise polyhydroxyalkanoate (PHA). In the subsequent aerobic stage, PHA is being oxidised to gain energy for glycogen replenishment (from PHA) and for cell growth. This article describes a complete anaerobic and aerobic model for GAO based on the understanding of their metabolic pathways. The anaerobic model has been developed and reported previously, while the aerobic metabolic model was developed in this study. It is based on the assumption that acetyl-CoA and propionyl-CoA go through the catabolic and anabolic processes independently. Experimental validation shows that the integrated model can predict the anaerobic and aerobic results very well. It was found in this study that at pH 7 the maximum acetate uptake rate of GAO was slower than that reported for PAO in the anaerobic stage. On the other hand, the net biomass production per C-mol acetate added is about 9% higher for GAO than for PAO. This would indicate that PAO and GAO each have certain competitive advantages during different parts of the anaerobic/aerobic process cycle. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Changes in composition during the maturation of Western Schley pecans [Carya illinoinensis (Wangenh.) K. Koch] grown in Australia were investigated. Pecans of different maturity levels were collected at monthly intervals between March and June in. 1999 and 2000 and analyzed for the concentrations of moisture, total lipid, sucrose, raffinose, protein, and the minerals aluminum, boron, calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, sulfur, and zinc. Moisture, total lipid, and calcium contents changed significantly (p < 0.05) with harvest time and maturity, whereas the other components did not. Western Schley pecans grown in Australia should be harvested after the shuck has opened and it is either green or brown in color to maximize total lipid content and quality. This occurred after May 11 in 1999 and after May 17 in 2000.
Resumo:
Nos anos mais recentes, observa-se aumento na adoção das técnicas de silvicultura de precisão em florestas plantadas no Brasil. Os plantios de eucalipto ocorrem preferencialmente em áreas com baixa fertilidade de solo e consequentemente baixa produtividade. Logo, para otimizar ao máximo a produção, é necessário saber o quanto essa cultura pode produzir em cada local (sítio). Objetivou-se aplicar uma metodologia que utiliza técnicas de estatística, geoestatística e geoprocessamento, no mapeamento da variabilidade espacial e temporal de atributos químicos do solo cultivado com eucalipto, em área de 10,09 ha, situada no sul do estado do Espírito Santo. Os atributos químicos da fertilidade do solo estudados foram: fósforo (P), potássio (K), cálcio (Ca) e magnésio (Mg), no ano da implantação do povoamento do eucalipto, em 2008, e três anos após, em 2011. O solo foi amostrado em duas profundidades, 0-0,2 m e 0,2-0,4 m, nos 94 pontos de uma malha regular, com extensão de 33 x 33 m. Os dados foram analisados pela estatística descritiva e, em seguida, pela geoestatística, por meio do ajuste de semivariogramas. Diferentes métodos de interpolação foram testados para produzir mapas temáticos mais precisos e facilitar as operações algébricas utilizadas. Com o auxílio de índices quantitativos, realizou-se uma análise geral da fertilidade do solo, por meio da álgebra de mapas. A metodologia utilizada neste estudo possibilitou mapear a variabilidade espacial e temporal de atributos químicos do solo. A análise variográfica mostrou que todos os atributos estudados apresentaram-se estruturados espacialmente, exceto para o atributo P, no Ano Zero (camada 0-0,2 m) e no Ano Três (ambas as camadas). Os melhores métodos de interpolação para o mapeamento de cada atributo químico do solo foram identificados com a ajuda gráfica do Diagrama de Taylor. Mereceram destaque, os modelos esférico e exponencial nas interpolações para a maioria dos atributos químicos do solo avaliados. Apesar de a variação espacial e temporal dos atributos estudados apresentar-se, em média, com pequena variação negativa, a metodologia usada mostrou variações positivas na fertilidade do solo em várias partes da área de estudo. Além disso, os resultados demonstram que os efeitos observados são majoritariamente em função da cultura, uma vez que não foram coletadas amostras de solo em locais adubados. A produtividade do sítio florestal apresentou-se com tendências semelhantes às variações ocorridas na fertilidade do solo, exceto para o magnésio, que se mostrou com tendências espaciais para suporte de elevadas produtividades, de até 50 m3 ha-1 ano-1. Além de mostrar claramente as tendências observadas para as variações na fertilidade do solo, a metodologia utilizada confirma um caminho operacional acessível para empresas e produtores florestais para o manejo nutricional em florestas plantadas. O uso dos mapas facilita a mobilização de recursos para melhorar a aplicação de fertilizantes e corretivos necessários.
Resumo:
Rock phosphates have low solubility in water, but good solubility in acid. The use of organic compounds together with these phosphorus sources applied to the basal leaf axils of pineapple can increase the solubility of this phosfate source and increase the P availability to the crop. A greenhouse experiment was conducted using Araxá rock phosphate (10 g) in combination or not with solutions containing increasing concentrations of humic acids (0 to 40 mmol L-1 of carbon), with or without citric acid (0.005 mmol L-1), applied to basal leaf axils of pineapple cv. Pérola. Growth and nutritional characteristics of aerial plant parts were assessed. Growth rates of aerial parts and N, P, K, Ca and Mg contents increased curvilinearly with increasing concentration of carbon in the form of humic acids. Maximum values were found for the concentration of 9.3 mmol L-1 of carbon combined with 0.005 mmol L-1 of citric acid and natural phosphate.