963 resultados para PHOSPHOLIPASE C-GAMMA-2
Resumo:
Barium strontium titanate (Ba0.65Sr0.35TiO3) nanocrystalline thin films, which were produced by the soft chemical method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are crack-free, well-adhered, and fully crystallized. The microstructure displayed a polycrystalline nature with nanograin size. The metal-BST-metal structure of the thin films treated at 700 degrees C show food electric properties. The ferroelectric nature of the BST35 thin film was indicated by buttertly- shaped C-V curves. The capacitance-frequency curves reveal that the dielectric constant may reach a value up to 800 at 100kHz. The dissipation factor was 0.01 at 100kHz. The charge storage density as function of applied voltage graph showed that the charge storage densities are suitable for use in trench type 64 Mb ( 1-5 mu C/cm(2) and 265 Mb (2-11 mu C/cm(2)) DRAMs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
a-b axis-oriented, lanthanum doped Bi4Ti3O12 (BLT) thin films with a TiO2 rutile buffer layer deposited on Pt/Ti/SiO2/Si substrates were grown by the soft chemical method. Butterfly dielectric behavior has been achieved and can be ascribed to the ferroelectric domain switching. The remanent polarization and the coercive voltage for the film deposited on TiO2 buffer layer were 22.2 mu C/cm(2) and 1.8 V, respectively. Random-oriented BLT films showed a reduction in switching polarization when compared to the a-b axis-oriented films. Due to the excellent physical properties, these films are a promising candidate for use in lead-free applications in ferroelectric devices. (c) 2006 American Institute of Physics.
Resumo:
The ferroelectric properties and leakage current mechanisms of preferred oriented Bi3.25La0.75Ti3O12 (BLT) thin films deposited on La0.5Sr0.5CoO3 by the polymeric precursor method were investigated. These films showed excellent ferroelectric properties in terms of large remnant polarization (2P(r)) of 47.6 mu C/cm(2) and (2E(c)) of 55 kV/cm, fatigue-free characteristics up to 10(10) switching cycles, and a current density of 0.7 mu A/cm(2) at 10 kV/cm. X-ray diffraction and scanning electron microscope investigations indicate that the deposited films exhibit a dense, well-crystallized microstructure having random orientations and with a rather smooth surface morphology. The improved ferroelectric and leakage current characteristics can be ascribed to the platelike grains of the BLT films, which make the domain walls easier to be switched under external field.
Resumo:
We report the successful deposition of CaBi2Nb2O9 (CBN) thin films on platinum coated silicon substrates by polymeric precursor method. The CBN thin films exhibited good structural, dielectric and CBN/Pt interface characteristics. The leakage current of the capacitor structure was around 0.15 A cm(-2) at an applied electric field of 30 kV cm(-1). The capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. The typical measured small signal dielectric constant and the dissipation factor at a frequency of 100 kHz were 90 and 0.053, respectively. The remanent polarization and the drive voltage values were 4.2 C cm(-2) and 1.7 V at an applied voltage of 10 V. No significant fatigue was observed at least up to 10(8) switching cycles. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ferroelectric PbTiO3 thin films were successfully prepared on a Pt(111)Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. X-ray diffraction patterns of the films indicate that they are polycrystalline in nature. This method allows low temperature (500 degrees C) synthesis and high electrical properties. The multilayer PbTiO3 thin films were granular in structure with a grain size of approximately 110-120 nm. A 380-nm-thick film was obtained by carrying out four cycles of the spin-coating/heating process. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness (=3.4 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 570 and 0.016. The C-V characteristics of perovskite thin film prepared at low temperature show normal ferrolectric behavior. The remanent polarization and coercive field for the films deposited were 13.62 mu C/cm(2) and 121.43 kV/cm, respectively. The high electrical property values are attributed to the excellent microstrutural quality and chemical homogeneity of thin films obtained by the polymeric precursor method. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
Background: the purpose of this study was to histologically evaluate the healing of experimental dehiscence defects after surface demineralization with tetracycline hydrochloride.Methods: Six adult male monkeys (Cebus apella) were used in this study. Dehiscence defects were surgically created on the buccal aspect of the mandibular lateral incisors in all animals. The root surfaces were debrided and planed. In a split-mouth design, a 10% tetracycline hydrochloride solution was applied to one tooth for 4 minutes (T group), followed by irrigation with saline. The contralateral tooth served as a control (C group). The flaps were repositioned and sutured. The animals were sacrificed at 6 months postoperatively and histological sections were processed. Computer-assisted histomorphometric analysis was used to evaluate the formation of new cementum, new bone, new connective tissue attachment, and length of the epithelium (junctional and sulcular).Results: Bone regeneration was similar in both groups (1.5 +/- 0.3 mm for the T group and 1.5 +/- 0.6 mm for the C group). The C group showed more new cementum than the T group (2.3 +/- 0.3 mm versus 2.2 +/- 0.3 mm) as well as a longer epithelium (1.0 +/- 0.3 mm versus 0.9 +/- 0.2 mm). The T group presented more new connective tissue attachment (3.1 +/- 0.2 mm) than the C group (2.9 +/- 0.6 mm). However, no statistically significant differences were detected between the two groups.Conclusions: the amount of new attachment was similar in both groups. Root conditioning with 10% tetracycline solution did not produce any additional new attachment in comparison to the controls.
Resumo:
Fatigue is an important problem to be considered if a ferroelectric film is used for non-volatile memory devices. In this phenomena, the remanent polarization and coercive field properties degrades in cycles which increase in hysteresis loops. The reasons have been attributed to different mechanisms such as a large voltage applied on ferroelectric film in every reading process in Ferroelectric Random Access Memory (FeRAM) or memories for digital storage in computer, grain size effects and others. The aim of this work is to investigate the influence of the crystallization kinetics on dielectric and ferroelectric properties of the Pb(Zr0.53Ti0.47)O-3 thin films prepared by an alternative chemical method. Films were crystallized in air on Pt/Ti/SiO2/Si substrates at 700 degrees C for 1 hour, in conventional thermal annealing (CTA), and at 700 degrees C for 1 min and 700 degrees C 5 min, using a rapid thermal annealing (RTA) process. Final films were crack free and presented an average of 750 nm in thickness. Dielectric properties were studied in the frequency range of 100 Hz - 1 MHz. All films showed a dielectric dispersion at low frequency. Ferroelectric properties were measured from hysteresis loops at 10 kHz. The obtained remanent polarization (P-r) and coercive field (E-c) were 3.7 mu C/cm(2) and 71.9 kV/cm respectively for film crystallized by CTA while in films crystallized by RTA these parameters were essentially the same. In the fatigue process, the P, value decreased to 14% from the initial value after 1.3 x 10(9) switching cycles, for film by CTA, while for film crystallized by RTA for 5 min, P, decreased to 47% from initial value after 1.7 x 10(9) switching cycles.
Resumo:
The (1 1 7) and (0 0 1 0)-oriented Bi4Ti3O12 thin films were fabricated on Pt/Ti/SiO2/Si substrates by using a polymeric precursor solution under appropriate crystallization conditions. Atomic force microscopy and scanning electron microscopy showed relatively large grains, which is typical for this system. The capacitance dependence on voltage is strongly non-linear, confirming the ferroelectric properties of the films resulting from the domain switching. The (1 1 7)-oriented films exhibited a higher remanent polarization (23.7 μ C cm(-2)) than the (0 0 1 0)-oriented films (11.8 μ C cm(-2)). Fatigue tests revealed that the temperature of thermal treatment and degree of orientation affect the performance of the device. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This article reports on the growth of SnO nanobelts and dendrites by a carbothermal reduction process. The materials were synthesized in a sealed tube furnace at 1210 degrees C and at 1260 degrees C for 2 h. in a dynamic nitrogen atmosphere of 40 seem. After synthesis, gray-black materials were collected downstream in the tube and the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The results showed that the gray-black materials were composed of nanobelts, which grew in the [110] direction of the orthorhombic structure of SnO. Some of the belts also presented dendritic growth. The dendrites grew in the (110) planes of the SnO structure, and no defects were observed at the junction between the nanobelts and the dendrites. A self-catalytic vapor-liquid-solid (VLS) process was proposed to explain the growth of the SnO nanobelts and dendrites.
Resumo:
SrMoO4 doped with rare earth are still scarce nowadays and have attracted great attention due to their applications as scintillating materials in electro-optical like solid-state lasers and optical fibers, for instance. In this work Sr1-xEuxMoO4 powders, where x = 0.01; 0.03 and 0.05, were synthesized by Complex Polymerization (CP) Method. The structural and optical properties of the SrMoO4:Eu3+ were analyzed by powder X-ray diffraction patterns, Fourier Transform Infra-Red (FTIR), Raman Spectroscopy, and through Photoluminescent Measurements (PL). Only a crystalline scheelite-type phase was obtained when the powders were heat-treated at 800 A degrees C for 2 h, 2 theta = 27.8A degrees (100% peak). The excitation spectra of the SrMoO4:Eu3+ (lambda(Em.) = 614 nm) presented the characteristic band of the Eu3 + 5L6 transition at 394 nm and a broad band at around 288 nm ascribed to the charge-transfer from the O (2p) state to the Mo (4d) one in the SrMoO4 matrix. The emission spectra of the SrMoO4:Eu3+ powders (lambda(Exc.) = 394 and 288 nm) show the group of sharp emission bands among 523-554 nm and 578-699 nm, assigned to the D-5(1)-> F-7(0,1and 2) and D-5(0)-> F-7(0,1,2,3 and 4), respectively. The band related to the D-5(0)-> F-7(0) transition indicates the presence of Eu3+ site without inversion center. This hypothesis is strengthened by the fact that the band referent to the D-5(0)-> F-7(2) transition is the most intense in the emission spectra.
Resumo:
This paper presents a study on the influence of milling condition on workpiece surface integrity focusing on hardness and roughness. The experimental work was carried out on a CNC machining center considering roughing and finishing operations. A 25 mm diameter endmill with two cemented carbide inserts coated with TiN layer were used for end milling operation. Low carbon alloyed steel Cr-Mo forged at 1200 degrees C was used as workpiece on the tests. Two kinds of workpiece conditions were considered, i.e. cur cooled after hot forging and normalized at 950 degrees C for 2 h. The results showed that finishing operation was able to significantly decrease the roughness by at least 46% without changing the hardness. on the other hand, roughing operation caused an increase in hardness statistically significant by about 6%. The machined surface presented deformed regions within feed marks, which directly affected the roughness. Surface finish behavior seems to correlate to the chip ratio given the decrease of 25% for roughing condition, which damaged the chip formation. The material removal rate for finishing operation 41% greater than roughing condition demonstrated to be favorable to the heat dissipation and minimized the effect on material hardness.
Resumo:
NiWO4 and ZnWO4 were synthesized by the polymeric precursor method at low temperatures with zinc or nickel carbonate as secondary phase. The materials were characterized by thermal analysis (TG/DTA), infrared spectroscopy, UV-Vis spectroscopy and X-ray diffraction. NiWO4 was crystalline after calcination at 350 A degrees C/12 h while ZnWO4 only crystallized after calcination at 400 A degrees C for 2 h. Thermal decomposition of the powder precursor of NiWO4 heat treated for 12 h had one exothermic transition, while the precursor heat treated for 24 h had one more step between 600 and 800 A degrees C with a small mass gain. Powder precursor of ZnWO4 presented three exothermic transitions, with peak temperatures and mass losses higher than NiWO4 has indicating that nickel made carbon elimination easier.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)