950 resultados para PARTITION-COEFFICIENTS
Resumo:
Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently attracted numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We hereby investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. Carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of epoxy. GnPs have been proved far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. Reduced acoustic impedance mismatch resulted from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.
Resumo:
This paper provides details on comparative testing of axle-to-chassis forces of two heavy vehicles (HVs) based on an experimental programme carried out in 2007. Dynamic forces at the air springs were measured against speed and roughness values for the test roads used. One goal of that programme was to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents a portion of the methodology, analysis and results from that programme. Two analytical techniques and their results are presented. The first uses correlation coefficients of the forces between air springs and the second is a student’s t-test. These were used to determine the causality surrounding improved dynamic load sharing between heavy vehicle air springs with larger air lines installed longitudinally compared with the standard sized air lines installed on the majority of air-sprung heavy vehicles.
Resumo:
The practical need to partition the world of viruses into distinguishable, universally agreed upon entities is the ultimate justification for developing a virus classification system. The Author of this Book is Andrew MQ King, Elliot Lefkowitz, Eric B. Carstens, Michael J. Adams Since 1971, the International Committee on Taxonomy of Viruses (ICTV) operating on behalf of the world community of virologists has taken on the task of developing a single, universal taxonomic scheme for all viruses infecting animals (vertebrate, invertebrates, and protozoa), plants (higher plants and algae), fungi, bacteria, and archaea.
Resumo:
OBJECTIVE To compare different reliability coefficients (exact agreement, and variations of the kappa (generalised, Cohen's and Prevalence Adjusted and Biased Adjusted (PABAK))) for four physiotherapists conducting visual assessments of scapulae. DESIGN Inter-therapist reliability study. SETTING Research laboratory. PARTICIPANTS 30 individuals with no history of neck or shoulder pain were recruited with no obvious significant postural abnormalities. MAIN OUTCOME MEASURES Ratings of scapular posture were recorded in multiple biomechanical planes under four test conditions (at rest, and while under three isometric conditions) by four physiotherapists. RESULTS The magnitude of discrepancy between the two therapist pairs was 0.04 to 0.76 for Cohen's kappa, and 0.00 to 0.86 for PABAK. In comparison, the generalised kappa provided a score between the two paired kappa coefficients. The difference between mean generalised kappa coefficients and mean Cohen's kappa (0.02) and between mean generalised kappa and PABAK (0.02) were negligible, but the magnitude of difference between the generalised kappa and paired kappa within each plane and condition was substantial; 0.02 to 0.57 for Cohen's kappa and 0.02 to 0.63 for PABAK, respectively. CONCLUSIONS Calculating coefficients for therapist pairs alone may result in inconsistent findings. In contrast, the generalised kappa provided a coefficient close to the mean of the paired kappa coefficients. These findings support an assertion that generalised kappa may lead to a better representation of reliability between three or more raters and that reliability studies only calculating agreement between two raters should be interpreted with caution. However, generalised kappa may mask more extreme cases of agreement (or disagreement) that paired comparisons may reveal.
Resumo:
BACKGROUND Expectations held by health professionals and their patients are likely to affect treatment choices in subacute inpatient rehabilitation settings for older adults. There is a scarcity of empirical evidence evaluating whether health professionals expectations of the quality of their patients' future health states are accurate. METHODS A prospective longitudinal cohort investigation was implemented to examine agreement (kappa coefficients, exact agreement, limits-of-agreement, and intraclass-correlation coefficients) between physiotherapists' (n = 23) prediction of patients' discharge health-related quality of life (reported on the EQ-5D-3L) and the actual health-related quality of life self-reported by patients (n = 272) at their discharge assessment (using the EQ-5D-3L). The mini-mental state examination was used as an indicator of patients' cognitive ability. RESULTS Overall, 232 (85%) patients had all assessment data completed and were included in analysis. Kappa coefficients (exact agreement) ranged between 0.37-0.57 (58%-83%) across EQ-5D-3L domains in the lower cognition group and 0.53-0.68 (81%-85%) in the better cognition group. CONCLUSIONS Physiotherapists in this subacute rehabilitation setting predicted their patients' discharge health-related quality of life with substantial accuracy. Physiotherapists are likely able to provide their patients with sound information regarding potential recovery and health-related quality of life on discharge. The prediction accuracy was higher among patients with better cognition than patients with poorer cognition.
Resumo:
Purpose To investigate the application of retinal nerve fibre layer (RNFL) thickness as a marker for severity of diabetic peripheral neuropathy (DPN) in people with Type 2 diabetes. Methods This was a cross-sectional study whereby 61 participants (mean age 61 [41-75 years], mean duration of diabetes 14 [1-40 years], 70% male) with Type 2 diabetes and DPN underwent optical coherence tomography (OCT) scans. Global and 4 quadrant (TSNI) RNFL thicknesses were measured at 3.45mm around the optic nerve head of one eye. Neuropathy disability score (NDS) was used to assess the severity of DPN on a 0 to 10 scale. Participants were divided into three age-matched groups representing mild (NDS=3-5), moderate (NDS=6-8) and severe (NDS=9-10) neuropathy. Two regression models were fitted for statistical analysis: 1) NDS scores as co-variate for global and quadrant RNFL thicknesses, 2) NDS groups as a factor for global RNFL thickness only. Results Mean (SD) RNFL thickness (µm) was 103(9) for mild neuropathy (n=34), 101(10) for moderate neuropathy (n=16) and 95(13) in the group with severe neuropathy (n=11). Global RNFL thickness and NDS scores were statistically significantly related (b=-1.20, p=0.048). When neuropathy was assessed across groups, a trend of thinner mean RNFL thickness was observed with increasing severity of neuropathy; however, this result was not statistically significant (F=2.86, p=0.065). TSNI quadrant analysis showed that mean RNFL thickness reduction in the inferior quadrant was 2.55 µm per 1 unit increase in NDS score (p=0.005). However, the regression coefficients were not statistically significant for RNFL thickness in the superior (b=-1.0, p=0.271), temporal (b=-0.90, p=0.238) and nasal (b=-0.99, p=0.205) quadrants. Conclusions RNFL thickness was reduced with increasing severity of DPN and the effect was most evident in the inferior quadrant. Measuring RNFL thickness using OCT may prove to be a useful, non-invasive technique for identifying severity of DPN and may also provide additional insight into common mechanisms for peripheral neuropathy and RNFL damage.
Resumo:
Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.
Resumo:
The reaction of the aromatic distonic peroxyl radical cations N-methyl pyridinium-4-peroxyl (PyrOO center dot+) and 4-(N,N,N-trimethyl ammonium)-phenyl peroxyl (AnOO center dot+), with symmetrical dialkyl alkynes 10?ac was studied in the gas phase by mass spectrometry. PyrOO center dot+ and AnOO center dot+ were produced through reaction of the respective distonic aryl radical cations Pyr center dot+ and An center dot+ with oxygen, O2. For the reaction of Pyr center dot+ with O2 an absolute rate coefficient of k1=7.1X10-12 cm3 molecule-1 s-1 and a collision efficiency of 1.2?% was determined at 298 K. The strongly electrophilic PyrOO center dot+ reacts with 3-hexyne and 4-octyne with absolute rate coefficients of khexyne=1.5X10-10 cm3 molecule-1 s-1 and koctyne=2.8X10-10 cm3 molecule-1 s-1, respectively, at 298 K. The reaction of both PyrOO center dot+ and AnOO center dot+ proceeds by radical addition to the alkyne, whereas propargylic hydrogen abstraction was observed as a very minor pathway only in the reactions involving PyrOO center dot+. A major reaction pathway of the vinyl radicals 11 formed upon PyrOO center dot+ addition to the alkynes involves gamma-fragmentation of the peroxy O?O bond and formation of PyrO center dot+. The PyrO center dot+ is rapidly trapped by intermolecular hydrogen abstraction, presumably from a propargylic methylene group in the alkyne. The reaction of the less electrophilic AnOO center dot+ with alkynes is considerably slower and resulted in formation of AnO center dot+ as the only charged product. These findings suggest that electrophilic aromatic peroxyl radicals act as oxygen atom donors, which can be used to generate alpha-oxo carbenes 13 (or isomeric species) from alkynes in a single step. Besides gamma-fragmentation, a number of competing unimolecular dissociative reactions also occur in vinyl radicals 11. The potential energy diagrams of these reactions were explored with density functional theory and ab initio methods, which enabled identification of the chemical structures of the most important products.
Resumo:
This paper describes the development of small low-cost cooperative robots for sustainable broad-acre agriculture to increase broad-acre crop production and reduce environmental impact. The current focus of the project is to use robotics to deal with resistant weeds, a critical problem for Australian farmers. To keep the overall system affordable our robot uses low-cost cameras and positioning sensors to perform a large scale coverage task while also avoiding obstacles. A multi-robot coordinator assigns parts of a given field to individual robots. The paper describes the modification of an electric vehicle for autonomy and experimental results from one real robot and twelve simulated robots working in coordination for approximately two hours on a 55 hectare field in Emerald Australia. Over this time the real robot 'sprayed' 6 hectares missing 2.6% and overlapping 9.7% within its assigned field partition, and successfully avoided three obstacles.
Resumo:
Recently, several classes of permutation polynomials of the form (x2 + x + δ)s + x over F2m have been discovered. They are related to Kloosterman sums. In this paper, the permutation behavior of polynomials of the form (xp − x + δ)s + L(x) over Fpm is investigated, where L(x) is a linearized polynomial with coefficients in Fp. Six classes of permutation polynomials on F2m are derived. Three classes of permutation polynomials over F3m are also presented.
Resumo:
We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 × 10-7 cm2/min to more than 10-4 cm2/min, depending on the CO2 pressure and location on the sample.
Resumo:
This paper addresses the problem of joint identification of infinite-frequency added mass and fluid memory models of marine structures from finite frequency data. This problem is relevant for cases where the code used to compute the hydrodynamic coefficients of the marine structure does not give the infinite-frequency added mass. This case is typical of codes based on 2D-potential theory since most 3D-potential-theory codes solve the boundary value associated with the infinite frequency. The method proposed in this paper presents a simpler alternative approach to other methods previously presented in the literature. The advantage of the proposed method is that the same identification procedure can be used to identify the fluid-memory models with or without having access to the infinite-frequency added mass coefficient. Therefore, it provides an extension that puts the two identification problems into the same framework. The method also exploits the constraints related to relative degree and low-frequency asymptotic values of the hydrodynamic coefficients derived from the physics of the problem, which are used as prior information to refine the obtained models.
Resumo:
Objective To test a conceptual model linking parental physical activity orientations, parental support for physical activity, and children's self-efficacy perceptions with physical activity participation. Participants and setting The sample consisted of 380 students in grades 7 through 12 (mean age, 14.0±1.6 years) and their parents. Data collection took place during the fall of 1996. Main outcome measures Parents completed a questionnaire assessing their physical activity habits, enjoyment of physical activity, beliefs regarding the importance of physical activity, and supportive behaviors for their child's physical activity. Students completed a 46-item inventory assessing physical activity during the previous 7 days and a 5-item physical activity self-efficacy scale. The model was tested via observed variable path analysis using structural equation modeling techniques (AMOS 4.0). Results An initial model, in which parent physical activity orientations predicted child physical activity via parental support and child self-efficacy, did not provide an acceptable fit to the data. Inclusion of a direct path from parental support to child physical activity and deletion of a nonsignificant path from parental physical activity to child physical activity significantly improved model fit. Standardized path coefficients for the revised model ranged from 0.17 to 0.24, and all were significant at the p<0.0001 level. Conclusions Parental support was an important correlate of youth physical activity, acting directly or indirectly through its influence on self-efficacy. Physical activity interventions targeted at youth should include and evaluate the efficacy of individual-level and community-level strategies to increase parents’ capacity to provide instrumental and motivational support for their children's physical activity.
Resumo:
Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.