865 resultados para PARMA HAM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New photonic crystal fiber designs are presented and numerically investigated in order to improve the state of art of high power fiber lasers. The focus of this work is targeted on the region of 2 μm laser emission, which is of high interest due to its eye-safe nature and due to the large amount of applications permitted. Thulium doped fiber amplifiers are suitable for emitting in this region. Different fiber designs have been proposed, both flexible and rod-type, with the aim to enlarge mode area while maintaining robust single mode operation. The analysis of thermal effects, caused by the high thulium quantum defect, have been taken in consideration. Solutions to counteract issues derived by detrimental thermal effects have been implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we consider four different scenarios of interest in modern satellite communications. For each scenario, we will propose the use of advanced solutions aimed at increasing the spectral efficiency of the communication links. First, we will investigate the optimization of the current standard for digital video broadcasting. We will increase the symbol rate of the signal and determine the optimal signal bandwidth. We will apply the time packing technique and propose a specifically design constellation. We will then compare some receiver architectures with different performance and complexity. The second scenario still addresses broadcast transmissions, but in a network composed of two satellites. We will compare three alternative transceiver strategies, namely, signals completely overlapped in frequency, frequency division multiplexing, and the Alamouti space-time block code, and, for each technique, we will derive theoretical results on the achievable rates. We will also evaluate the performance of said techniques in three different channel models. The third scenario deals with the application of multiuser detection in multibeam satellite systems. We will analyze a case in which the users are near the edge of the coverage area and, hence, they experience a high level of interference from adjacent cells. Also in this case, three different approaches will be compared. A classical approach in which each beam carries information for a user, a cooperative solution based on time division multiplexing, and the Alamouti scheme. The information theoretical analysis will be followed by the study of practical coded schemes. We will show that the theoretical bounds can be approached by a properly designed code or bit mapping. Finally, we will consider an Earth observation scenario, in which data is generated on the satellite and then transmitted to the ground. We will study two channel models, taking into account one or two transmit antennas, and apply techniques such as time and frequency packing, signal predistortion, multiuser detection and the Alamouti scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As defined by the European Union, “ ’Nanomaterial’ (NM) means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or agglomerate, where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm ” (2011/696/UE). Given their peculiar physico-chemical features, nanostructured materials are largely used in many industrial fields (e.g. cosmetics, electronics, agriculture, biomedical) and their applications have astonishingly increased in the last fifteen years. Nanostructured materials are endowed with very large specific surface area that, besides making them very useful in many industrial processes, renders them very reactive towards the biological systems and, hence, potentially endowed with significant hazard for human health. For these reasons, in recent years, many studies have been focused on the identification of toxic properties of nanostructured materials, investigating, in particular, the mechanisms behind their toxic effects as well as their determinants of toxicity. This thesis investigates two types of nanostructured TiO2 materials, TiO2 nanoparticles (NP), which are yearly produced in tonnage quantities, and TiO2 nanofibres (NF), a relatively novel nanomaterial. Moreover, several preparations of MultiWalled Carbon Nanotubes (MWCNT), another nanomaterial widely present in many products, are also investigated.- Although many in vitro and in vivo studies have characterized the toxic properties of these materials, the identification of their determinants of toxicity is still incomplete. The aim of this thesis is to identify the structural determinants of toxicity, using several in vitro models. Specific fields of investigation have been a) the role of shape and the aspect ratio in the determination of biological effects of TiO2 nanofibres of different length; b) the synergistic effect of LPS and TiO2 NP on the expression of inflammatory markers and the role played therein by TLR-4; c) the role of functionalization and agglomeration in the biological effects of MWCNT. As far as biological effects elicited by TiO2 NF are concerned, the first part of the thesis demonstrates that long TiO2 nanofibres caused frustrated phagocytosis, cytotoxicity, hemolysis, oxidative stress and epithelial barrier perturbation. All these effects were mitigated by fibre shortening through ball-milling. However, short TiO2 NF exhibited enhanced ability to activate acute pro-inflammatory effects in macrophages, an effect dependent on phagocytosis. Therefore, aspect ratio reduction mitigated toxic effects, while enhanced macrophage activation, likely rendering the NF more prone to phagocytosis. These results suggest that, under in vivo conditions, short NF will be associated with acute inflammatory reaction, but will undergo a relatively rapid clearance, while long NF, although associated with a relatively smaller acute activation of innate immunity cells, are not expected to be removed efficiently and, therefore, may be associated to chronic inflammatory responses. As far as the relationship between the effects of TiO2 NP and LPS, investigated in the second part of the thesis, are concerned, TiO2 NP markedly enhanced macrophage activation by LPS through a TLR-4-dependent intracellular pathway. The adsorption of LPS onto the surface of TiO2 NP led to the formation of a specific bio-corona, suggesting that, when bound to TiO2 NP, LPS exerts a much more powerful pro-inflammatory effect. These data suggest that the inflammatory changes observed upon exposure to TiO2 NP may be due, at least in part, to their capability to bind LPS and, possibly, other TLR agonists, thus enhancing their biological activities. Finally, the last part of the thesis demonstrates that surface functionalization of MWCNT with amino or carboxylic groups mitigates the toxic effects of MWCNT in terms of macrophage activation and capability to perturb epithelial barriers. Interestingly, surface chemistry (in particular surface charge) influenced the protein adsorption onto the MWCNT surface, allowing to the formation of different protein coronae and the tendency to form agglomerates of different size. In particular functionalization a) changed the amount and the type of proteins adsorbed to MWCNT and b) enhanced the tendency of MWCNT to form large agglomerates. These data suggest that the different biological behavior of functionalized and pristine MWCNT may be due, at least in part, to the different tendency to form large agglomerates, which is significantly influenced by their different capability to interact with proteins contained in biological fluids. All together, these data demonstrate that the interaction between physico-chemical properties of nanostructured materials and the environment (cells + biological fluids) in which these materials are present is of pivotal importance for the understanding of the biological effects of NM. In particular, bio-persistence and the capability to elicit an effective inflammatory response are attributable to the interaction between NM and macrophages. However, the interaction NM-cells is heavily influenced by the formation at the nano-bio interface of specific bio-coronae that confer a novel biological identity to the nanostructured materials, setting the basis for their specific biological activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the challenging problem of designing systems able to perceive objects in underwater environments. In the last few decades research activities in robotics have advanced the state of art regarding intervention capabilities of autonomous systems. State of art in fields such as localization and navigation, real time perception and cognition, safe action and manipulation capabilities, applied to ground environments (both indoor and outdoor) has now reached such a readiness level that it allows high level autonomous operations. On the opposite side, the underwater environment remains a very difficult one for autonomous robots. Water influences the mechanical and electrical design of systems, interferes with sensors by limiting their capabilities, heavily impacts on data transmissions, and generally requires systems with low power consumption in order to enable reasonable mission duration. Interest in underwater applications is driven by needs of exploring and intervening in environments in which human capabilities are very limited. Nowadays, most underwater field operations are carried out by manned or remotely operated vehicles, deployed for explorations and limited intervention missions. Manned vehicles, directly on-board controlled, expose human operators to risks related to the stay in field of the mission, within a hostile environment. Remotely Operated Vehicles (ROV) currently represent the most advanced technology for underwater intervention services available on the market. These vehicles can be remotely operated for long time but they need support from an oceanographic vessel with multiple teams of highly specialized pilots. Vehicles equipped with multiple state-of-art sensors and capable to autonomously plan missions have been deployed in the last ten years and exploited as observers for underwater fauna, seabed, ship wrecks, and so on. On the other hand, underwater operations like object recovery and equipment maintenance are still challenging tasks to be conducted without human supervision since they require object perception and localization with much higher accuracy and robustness, to a degree seldom available in Autonomous Underwater Vehicles (AUV). This thesis reports the study, from design to deployment and evaluation, of a general purpose and configurable platform dedicated to stereo-vision perception in underwater environments. Several aspects related to the peculiar environment characteristics have been taken into account during all stages of system design and evaluation: depth of operation and light conditions, together with water turbidity and external weather, heavily impact on perception capabilities. The vision platform proposed in this work is a modular system comprising off-the-shelf components for both the imaging sensors and the computational unit, linked by a high performance ethernet network bus. The adopted design philosophy aims at achieving high flexibility in terms of feasible perception applications, that should not be as limited as in case of a special-purpose and dedicated hardware. Flexibility is required by the variability of underwater environments, with water conditions ranging from clear to turbid, light backscattering varying with daylight and depth, strong color distortion, and other environmental factors. Furthermore, the proposed modular design ensures an easier maintenance and update of the system over time. Performance of the proposed system, in terms of perception capabilities, has been evaluated in several underwater contexts taking advantage of the opportunity offered by the MARIS national project. Design issues like energy power consumption, heat dissipation and network capabilities have been evaluated in different scenarios. Finally, real-world experiments, conducted in multiple and variable underwater contexts, including open sea waters, have led to the collection of several datasets that have been publicly released to the scientific community. The vision system has been integrated in a state of the art AUV equipped with a robotic arm and gripper, and has been exploited in the robot control loop to successfully perform underwater grasping operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesi di dottorato ha riguardato l'indagine fitochimica della biodiversità spontanea di Humulus lupulus L. in Emilia Romagna e la valutazione degli effetti del clima dell'Italia settentrionale sul metabolismo secondario di cultivar di luppolo. In particolare, lo studio ha previsto l'individuazione di ecotipi di luppolo provenienti da zone planiziali e collinari di'Emilia Romagna e Lombardia, la loro messa a dimora in un campo collezione appositamente allestito, e il monitoraggio della resa di campo e della produzione di metaboliti secondari di natura polare (acilfluoroglucinoli, flavonidi isoprenilati) e apolare (terpeni e sequiterpeni). Gli obiettivi primari sono stati la valutazione di entità da portare direttamente in coltivazione o da introdurre in percorsi di breeding del luppolo in Italia, oltre all'ottimizzazione di metodi innovativi per lo screening dell'intero germoplasma italiano. Per definire le caratteristiche fitochimiche dei coni di luppolo sono stati messi a punto metodi cromatografici HPLC-UV, HPLC-MS/MS e GC-MS e metodi spettroscopici 1H-NMR. Nel corso del triennio i metodi sono stati applicati a 10 cultivar e oltre 30 ecotipi , alcuni dei quali hanno fornito dati anche a conclusione dell'intero periodo di acclimatazione. Per tutti si è anche verificata la resilienza alle diverse condizioni climatiche incontrate Le analisi chimiche hanno permesso di individuare una sostanziale differenza tra gli ecotipi e le cultivar, con i primi che si caratterizzano per una produzione modesta di α-acidi e β-acidi e un profilo aromatico ricco di isomeri del selinene. Questo risultato può essere interessante per l’industria della birra nazionale e in particolare per il settore dei microbirrifici artigianali, in quanto i luppoli più pregiati sono proprio quelli con un basso contenuto di acidi amari e ricchi di oli essenziali che possano impartire alle birre prodotte note aromatiche particolari e legate al territorio. L’indagine agronomica monitorata su tre anni di produzione ha anche fatto emergere la resistenza degli ecotipi italiani al clima caldo e siccitoso e ha evidenziato invece come le cultivar estere abbiano limiti fisiologici a queste condizioni. Confrontando il profilo fitochimico delle cultivar coltivate in Italia con i prodotti acquistati nei paesi d’origine è emerso che il metabolismo secondario per alcune cultivar è particolarmente differente, come nel caso della cultivar Marynka, che rispetto agli standard commerciali ha prodotto in Italia coni ricchi di oli essenziali con alte quantità di trans-β-farnesene, cambiandone le caratteristiche da varietà amaricante ad aromatica. I risultati ottenuti dimostrano la fattibilità della coltivazione di Humulus lupulus L. sul territorio nazionale con ottime prospettive di produttività per gli ecotipi italiani. Inoltre da questi primi risultati è ora possibile intraprendere un programma di breeding per la creazione di nuove varietà, più resistenti al caldo e con le caratteristiche desiderate in base all’utilizzo del prodotto, sia per quanto riguarda l’industria della birra, sia la cosmetico-farmaceutica per la produzione di estratti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physical implementation of quantum information processing is one of the major challenges of current research. In the last few years, several theoretical proposals and experimental demonstrations on a small number of qubits have been carried out, but a quantum computing architecture that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is still lacking. In particular, a major ultimate objective is the construction of quantum simulators, yielding massively increased computational power in simulating quantum systems. Here we investigate promising routes towards the actual realization of a quantum computer, based on spin systems. The first one employs molecular nanomagnets with a doublet ground state to encode each qubit and exploits the wide chemical tunability of these systems to obtain the proper topology of inter-qubit interactions. Indeed, recent advances in coordination chemistry allow us to arrange these qubits in chains, with tailored interactions mediated by magnetic linkers. These act as switches of the effective qubit-qubit coupling, thus enabling the implementation of one- and two-qubit gates. Molecular qubits can be controlled either by uniform magnetic pulses, either by local electric fields. We introduce here two different schemes for quantum information processing with either global or local control of the inter-qubit interaction and demonstrate the high performance of these platforms by simulating the system time evolution with state-of-the-art parameters. The second architecture we propose is based on a hybrid spin-photon qubit encoding, which exploits the best characteristic of photons, whose mobility is exploited to efficiently establish long-range entanglement, and spin systems, which ensure long coherence times. The setup consists of spin ensembles coherently coupled to single photons within superconducting coplanar waveguide resonators. The tunability of the resonators frequency is exploited as the only manipulation tool to implement a universal set of quantum gates, by bringing the photons into/out of resonance with the spin transition. The time evolution of the system subject to the pulse sequence used to implement complex quantum algorithms has been simulated by numerically integrating the master equation for the system density matrix, thus including the harmful effects of decoherence. Finally a scheme to overcome the leakage of information due to inhomogeneous broadening of the spin ensemble is pointed out. Both the proposed setups are based on state-of-the-art technological achievements. By extensive numerical experiments we show that their performance is remarkably good, even for the implementation of long sequences of gates used to simulate interesting physical models. Therefore, the here examined systems are really promising buildingblocks of future scalable architectures and can be used for proof-of-principle experiments of quantum information processing and quantum simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gli obiettivi della presente ricerca sono stati l’identificazione di un protocollo per la conservazione ex situ e lo studio delle risposte fisiologiche allo stress salino di due specie endemiche della regione Liguria, di particolare interesse poiché protette e a rischio d’estinzione. Sia il Limonium cordatum che il Convolvulus sabatius vivono in condizioni naturali particolari, infatti, sono costantemente esposte agli aerosol marini, che presentano elevate concentrazioni di NaCl, per tali ragioni si è cercato di comprendere quali fossero i meccanismi di risposta delle due specie allo stress salino; da ultimo, se presentassero risposte simili, visto l’habitat comune che condividono. Per capire in modo più approfondito le risposte fisiologiche delle due piante, è stato anche preso in considerazione l’habitat naturale per cogliere eventuali differenze nella zona di crescita, per esempio maggiore e/o minore esposizione agli spruzzi marini di una piuttosto che dell’altra. Per il raggiungimento di tali obiettivi si è proceduto con: •L’utilizzo della coltura in vitro per comprendere i meccanismi responsabili della tolleranza e/o dell’adattamento allo stress salino, che ha permesso di confrontare le due specie in un ambiente controllato con la sola variabile della concentrazione salina. Per valutare tali risposte si sono effettuate delle indagini morfologiche, istologiche e fisiologiche; • L’identificazione delle condizioni ambientali migliori per la possibile reintroduzione, sia con l’uso della coltura in vitro, che ha permesso di stabilire il valore soglia di tolleranza della concentrazione di NaCl di entrambe le specie, che con sopralluoghi in loco, per individuare eventuali situazioni differenti tra le due specie, che giustificassero risposte diverse tra di esse. Nel caso del Convolvulus sabatius, essendo il suo areale di crescita più limitato e, volendo quindi approfondire le condizioni ambientali naturali di crescita, si è provveduto a simulare l’habitat autoctono con prove in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le nanotecnologie sono un settore emergente in rapida crescita, come dimostra l'esplosione del mercato dei prodotti ad esso collegati. I quantum dot di cadmio solfuro (CdS QD) sono ampiamente utilizzati per la produzione di materiali semiconduttori e dispositivi optoelettronici; tuttavia, non sono ancora completamente chiari gli effetti di questi nanomateriali sulla salute umana. Questo lavoro di dottorato si pone l'obbiettivo di definire il potenziale citotossico e genotossico dei CdS QD in linee cellulari umane e definirne il meccanismo implicato. A questo scopo, essendo il fegato uno dei principali organi di accumulo del cadmio e dei nanomateriali a base di cadmio, è stata utilizzata la linea cellulare HepG2 derivante da un epatocarcinoma umano. È stato evidenziato, in seguito all'assorbimento, da parte delle cellule, dei CdS QD, un effetto citotossico, con conseguente modulazione dell'espressione genica di una serie di geni coinvolti sia nei processi di rescue (autofagia, risposta allo stress) sia in quelli di morte cellulare programmata. È stato, inoltre, dimostrata l'assenza di un rilevante effetto genotossico dipendente da questi nanomateriali. Infine, è stato osservato che cellule esposte ai CdS QD presentano mitocondri con un potenziale di membrana alterato, con conseguente alterazione della funzionalità di tale organello, pur conservando l'integrità del DNA mitocondriale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis encompasses the two researches projects I conducted during my PhD program in Molecular Biology and Pathology. The common thread is represented by the analysis of the signaling pathways implicated in the pathophysiology of the two most aggressive Philadelphia-negative myeloproliferative neoplasms, namely, atypical chronic myeloid leukemia (aCML) and primary myelofibrosis (PMF). In the last decade, since the description of the JAK2V617F mutation in 2005, the field of the molecular characterization of Philadelphia-negative myeloproliferative neoplasms has experienced an astonishing implementation that led to the discovery of 16 new mutations involving signal transduction, epigenetic modifiers, cell cycle regulators. Nevertheless, their pathogenetic relevance and whether they could represent good “druggable” candidates have to be proved yet. In the first section I provide the first report of the signaling cascade down-stream the rare cytogenetic lesion t(8;9)(p22;p24)/PCM1-JAK2 associated with aCML, finding that it selectively activates the ERK1/2 signaling without affecting JAK/STAT phosphorylation. In the second part, I investigated the implication of the ε isoform of novel Protein kinase Cs (PKCs) in the pathophysiology of the aberrant megakaryocytopoiesis in PMF, concluding that the over-expression of PKCε detains a crucial relevance in the aberrant behavior of PMF megakaryocytes and its inhibition is capable to restore their normal differentiation and abrogate the anti-apoptotic signaling. Both results are discussed in the view of their therapeutic implications. In case PCM1/JAK2-related hematologic neoplasms, ERK-inhibitors rather than JAK-inhibitors (i.e. ruxolitinib) should be considered as a “tailored” drugs. In case of PMF, PKCε-inhibitors (i.e. εV1-2 peptide) configure as an appealing strategy to re-direct the megakaryocytic neoplastic clone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nel presente lavoro di tesi sono stati studiati diversi aspetti riguardanti micotossine regolate ed emergenti al fine di fornire informazioni circa la loro mitigazione dal campo al prodotto finito, focalizzando l’attenzione sul potenziale impatto del processo tecnologico. Successivamente, il loro ruolo tossicologico, ancora in discussione, è stato indagato attraverso l’applicazione di modelli gastrointestinali. In particolare, lo studio è stato rivolto a DON, micotossina più comune nel grano, DON-3-Glc, che rappresenta la sua principale forma modificata, e alla micotossina ENN B, maggiore rappresentante tra il gruppo delle cosiddette micotossine “emergenti”. Questo studio è stato quindi suddiviso in tre sezioni. La prima è stata rivolta allo sviluppo di esperimenti in serra effettuati su diversi genotipi di grano duro al fine di comprendere meglio il meccanismo di detossificazione dal DON e la resistenza delle diverse varietà ad una delle malattie più gravi che colpiscono questa specie (fusariosi della spiga). La seconda sezione ha riguardato lo studio del reale impatto di alcune filiere di produzione strategiche sul contenuto finale in micotossine. Inoltre, una strategia di mitigazione è stata messa a punto tenendo conto del possibile sviluppo di altri contaminanti legati al processo stesso e ottenendo un prodotto finito adeguato per il consumatore. Nell'ultima sezione di questo lavoro sono invece state effettuate delle indagini circa i possibili risvolti tossicologici di questi composti, valutando il loro destino durante la digestione umana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asthma is a multifactorial disease for which a variety of mouse models have been developed. A major drawback of these models is represented by the transient nature of the airway pathology peaking 24 to 72 hours after challenge and resolving in 1 to 2 weeks. The objective of this study is to characterize the temporal evolution of pulmonary inflammation and remodeling in a recently described mouse model of chronic asthma (8 week treatment with 3 allergens relevant for the human pathology: Dust mite, Ragweed, and Aspergillus; DRA). We studied the DRA model taking advantage of fluorescence molecular tomography (FMT) imaging using near-infrared probes to non-invasively evaluate lung inflammation and airway remodeling. At 4, 6, 8 or 11 weeks, cathepsin- and metalloproteinase-dependent fluorescence was evaluated in vivo. A subgroup of animals, after 4 weeks of DRA, was treated with Budesonide (100 µg/kg intranasally) daily for 4 weeks. Cathepsin-dependent fluorescence in DRA-sensitized mice resulted significantly increased at 6 and 8 weeks, and was markedly inhibited by budesonide. This fluorescent signal well correlated with ex vivo analysis such as bronchoalveolar lavage eosinophils and alveolar cell infiltration. Metalloproteinase-dependent fluorescence was significantly increased at 8 and 11 weeks, nicely correlated with collagen deposition, as evaluated histologically by Masson’s Trichrome staining, and airway epithelium hypertrophy, and was also partly inhibited by budesonide. In conclusion, FMT proved suitable for longitudinal study to evaluate asthma progression, both in terms of inflammatory cell infiltration and airway remodeling, allowing the determination of treatment efficacy in a chronic asthma model in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studiamo l'operatore di Ornstein-Uhlenbeck e il semigruppo di Ornstein-Uhlenbeck in un sottoinsieme aperto convesso $\Omega$ di uno spazio di Banach separabile $X$ dotato di una misura Gaussiana centrata non degnere $\gamma$. In particolare dimostriamo la disuguaglianza di Sobolev logaritmica e la disuguaglianza di Poincaré, e grazie a queste disuguaglianze deduciamo le proprietà spettrali dell'operatore di Ornstein-Uhlenbeck. Inoltre studiamo l'equazione ellittica $\lambdau+L^{\Omega}u=f$ in $\Omega$, dove $L^\Omega$ è l'operatore di Ornstein-Uhlenbeck. Dimostriamo che per $\lambda>0$ e $f\in L^2(\Omega,\gamma)$ la soluzione debole $u$ appartiene allo spazio di Sobolev $W^{2,2}(\Omega,\gamma)$. Inoltre dimostriamo che $u$ soddisfa la condizione di Neumann nel senso di tracce al bordo di $\Omega$. Questo viene fatto finita approssimazione dimensionale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the formal definition of a novel Mobile Cloud Computing (MCC) extension of the Networked Autonomic Machine (NAM) framework, a general-purpose conceptual tool which describes large-scale distributed autonomic systems. The introduction of autonomic policies in the MCC paradigm has proved to be an effective technique to increase the robustness and flexibility of MCC systems. In particular, autonomic policies based on continuous resource and connectivity monitoring help automate context-aware decisions for computation offloading. We have also provided NAM with a formalization in terms of a transformational operational semantics in order to fill the gap between its existing Java implementation NAM4J and its conceptual definition. Moreover, we have extended NAM4J by adding several components with the purpose of managing large scale autonomic distributed environments. In particular, the middleware allows for the implementation of peer-to-peer (P2P) networks of NAM nodes. Moreover, NAM mobility actions have been implemented to enable the migration of code, execution state and data. Within NAM4J, we have designed and developed a component, denoted as context bus, which is particularly useful in collaborative applications in that, if replicated on each peer, it instantiates a virtual shared channel allowing nodes to notify and get notified about context events. Regarding the autonomic policies management, we have provided NAM4J with a rule engine, whose purpose is to allow a system to autonomously determine when offloading is convenient. We have also provided NAM4J with trust and reputation management mechanisms to make the middleware suitable for applications in which such aspects are of great interest. To this purpose, we have designed and implemented a distributed framework, denoted as DARTSense, where no central server is required, as reputation values are stored and updated by participants in a subjective fashion. We have also investigated the literature regarding MCC systems. The analysis pointed out that all MCC models focus on mobile devices, and consider the Cloud as a system with unlimited resources. To contribute in filling this gap, we defined a modeling and simulation framework for the design and analysis of MCC systems, encompassing both their sides. We have also implemented a modular and reusable simulator of the model. We have applied the NAM principles to two different application scenarios. First, we have defined a hybrid P2P/cloud approach where components and protocols are autonomically configured according to specific target goals, such as cost-effectiveness, reliability and availability. Merging P2P and cloud paradigms brings together the advantages of both: high availability, provided by the Cloud presence, and low cost, by exploiting inexpensive peers resources. As an example, we have shown how the proposed approach can be used to design NAM-based collaborative storage systems based on an autonomic policy to decide how to distribute data chunks among peers and Cloud, according to cost minimization and data availability goals. As a second application, we have defined an autonomic architecture for decentralized urban participatory sensing (UPS) which bridges sensor networks and mobile systems to improve effectiveness and efficiency. The developed application allows users to retrieve and publish different types of sensed information by using the features provided by NAM4J's context bus. Trust and reputation is managed through the application of DARTSense mechanisms. Also, the application includes an autonomic policy that detects areas characterized by few contributors, and tries to recruit new providers by migrating code necessary to sensing, through NAM mobility actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internet of Things (IoT) can be defined as a “network of networks” composed by billions of uniquely identified physical Smart Objects (SO), organized in an Internet-like structure. Smart Objects can be items equipped with sensors, consumer devices (e.g., smartphones, tablets, or wearable devices), and enterprise assets that are connected both to the Internet and to each others. The birth of the IoT, with its communications paradigms, can be considered as an enabling factor for the creation of the so-called Smart Cities. A Smart City uses Information and Communication Technologies (ICT) to enhance quality, performance and interactivity of urban services, ranging from traffic management and pollution monitoring to government services and energy management. This thesis is focused on multi-hop data dissemination within IoT and Smart Cities scenarios. The proposed multi-hop techniques, mostly based on probabilistic forwarding, have been used for different purposes: from the improvement of the performance of unicast protocols for Wireless Sensor Networks (WSNs) to the efficient data dissemination within Vehicular Ad-hoc NETworks (VANETs).