951 resultados para PAIR-INSTABILITY SUPERNOVAE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system - spectrally dependent losses - achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the essential features of the dissipative parametric instability, in the universal complex Ginzburg- Landau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +ΔF and in the -ΔF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode- locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered dissipative parametric instability is presented in the framework of the universal complex Ginzburg-Landau equation. The pattern formation associated with the instability is discussed in connection to the relevant applications in nonlinear photonics especially as a new tool for pulsed lasers design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topoisomerase 1 (Top1), a Type IB topoisomerase, functions to relieve transcription- and replication-associated torsional stress in DNA. Top1 cleaves one strand of DNA, covalently associates with the 3’ end of the nick to form a Top1-cleavage complex (Top1cc), passes the intact strand through the nick and finally re-ligates the broken strand. The chemotherapeutic drug, Camptothecin, intercalates at a Top1cc and prevents the crucial re-ligation reaction that is mediated by Top1, resulting in the conversion of a nick to a toxic double-strand break during DNA replication or the accumulation of Top1cc. This mechanism of action preferentially targets rapidly dividing tumor cells, but can also affect non-tumor cells when patients undergo treatment. Additionally, Top1 is found to be elevated in numerous tumor tissues making it an attractive target for anticancer therapies. We investigated the effects of Top1 on genome stability, effects of persistent Top1-cleavage complexes and elevated Top1 levels, in Saccharomyces cerevisiae. We found that increased levels of the Top1cc resulted in a five- to ten-fold increase in reciprocal crossovers, three- to fifteen fold increase in mutagenesis and greatly increased instability within the rDNA and CUP1 tandem arrays. Increased Top1 levels resulted in a fifteen- to twenty-two fold increase in mutagenesis and increased instability in rDNA locus. These results have important implications for understanding the effects of CPT and elevated Top1 levels as a chemotherapeutic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binary compound SnSe exhibits record high thermoelectric performance, largely because of its very low thermal conductivity. The origin of the strong phonon anharmonicity leading to the low thermal conductivity of SnSe is investigated through first-principles calculations of the electronic structure and phonons. It is shown that a Jahn-Teller instability of the electronic structure is responsible for the high-temperature lattice distortion between the Cmcm and Pnma phases. The coupling of phonon modes and the phase transition mechanism are elucidated, emphasizing the connection with hybrid improper ferroelectrics. This coupled instability of electronic orbitals and lattice dynamics is the origin of the strong anharmonicity causing the ultralow thermal conductivity in SnSe. Exploiting such bonding instabilities to generate strong anharmonicity may provide a new rational to design efficient thermoelectric materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trinucleotide repeat (TNR) expansion is the cause of more than 40 types of human neurodegenerative diseases such as Huntington’s disease. Recent studies have linked TNR expansion with oxidative DNA damage and base excision repair (BER). In this research, we provided the first evidence that oxidative DNA damage can induce CAG repeat deletion/contraction via BER. We found that BER of an oxidized DNA base lesion, 8-oxoguanine in a CAG repeat tract, resulted in the formation of a CTG hairpin at the template strand. DNA polymerase β (pol b) then skipped over the hairpin creating a 5’-flap that was cleaved by flap endonuclease 1 (FEN1) leading to CAG repeat deletion. To further investigate whether BER may help to shorten an expanded TNR tract, we examined BER in a CAG repeat hairpin loop. We found that 8-oxoguanine DNA glycosylase removed the oxidized base located in the loop region of the hairpin leaving an abasic site. Apurinic/apyrimidinic (AP) endonuclease 1 then incised the 5’-end of the abasic site leaving a nick in the loop. This further converted the hairpin into an intermediate with a 3’-flap and a 5’-flap. As a 5’-3’ endonuclease, FEN1 cleaved the 5’-flap, whereas a 3’-5’ endonuclease, Mus81/Eme1, removed the 3’-flap. The coordination between FEN1 and Mus81/Eme1 ultimately resulted in removal of a CAG repeat hairpin attenuating or preventing TNR expansion. To further explore if pol β bypass of an oxidized base lesion, 5’,8-cyclodeoxyadenosine, may affect TNR instability, we examined pol β DNA synthesis in bypassing this base lesion and found that the lesion preferentially induced TNR deletion during BER and Okazaki fragment maturation. The repeat deletion was mediated by the formation of a loop in the template strand induced specifically by the damage. Pol β then skipped over the loop structure creating a 5’-flap that was efficiently removed by FEN1 leading to repeat deletion. Our study demonstrates that pol β-mediated BER plays an important role in mediating TNR deletion and removing a TNR hairpin to prevent TNR expansion. Our research provides a molecular basis for further developing BER as a target for prevention and treatment of neurodegenerative diseases caused by TNR expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It seems to be generally assumed that earnings instability has increased in the last decade or so, as earnings inequality has widened, but is this indeed the case, and if so, to what degree? This paper builds on earlier U.S. work to look at the total variance in individuals’ earnings with a focus on the distinction between permanent earnings variation associated with factors such as human capital investments or other persistent worker attributes, and transitory earnings variation or instability for a given individual from one year to another. We find that there was an increase in overall earnings variability, especially for men, but that the greatest part of this increase was driven by the permanent component – that is, by a widening dispersion of (life-cycle) earnings differentials across workers. The increased volatility of workers’ earnings about their life-cycle earnings profiles played a secondary role in the overall increase in men’s earnings variability, whereas for women this effect was very small or even worked in the opposite direction (depending on the particular age group). Patterns by age and region are also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The violent merger of two carbon-oxygen white dwarfs has been proposed as a viable progenitor for some Type Ia supernovae. However, it has been argued that the strong ejecta asymmetries produced by this model might be inconsistent with the low degree of polarization typically observed in Type Ia supernova explosions. Here, we test this claim by carrying out a spectropolarimetric analysis for the model proposed by Pakmor et al. for an explosion triggered during the merger of a 1.1 and 0.9 M⊙ carbon-oxygen white dwarf binary system. Owing to the asymmetries of the ejecta, the polarization signal varies significantly with viewing angle. We find that polarization levels for observers in the equatorial plane are modest (≲1 per cent) and show clear evidence for a dominant axis, as a consequence of the ejecta symmetry about the orbital plane. In contrast, orientations out of the plane are associated with higher degrees of polarization and departures from a dominant axis. While the particular model studied here gives a good match to highly polarized events such as SN 2004dt, it has difficulties in reproducing the low polarization levels commonly observed in normal Type Ia supernovae. Specifically, we find that significant asymmetries in the element distribution result in a wealth of strong polarization features that are not observed in the majority of currently available spectropolarimetric data of Type Ia supernovae. Future studies will map out the parameter space of the merger scenario to investigate if alternative models can provide better agreement with observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct detection of a stellar system that explodes as a Type Ia supernova (SN Ia) has not yet been successful. Various indirect methods have been used to investigate SN Ia progenitor systems but none have produced conclusive results. A prediction of single-degenerate models is that H- (or He-) rich material from the envelope of the companion star should be swept up by the SN ejecta in the explosion. Seven SNe Ia have been analysed to date looking for signs of H-rich material in their late-time spectra and none were detected. We present results from new late-time spectra of 11 SNe Ia obtained at the Very Large Telescope using XShooter and FORS2. We present the tentative detection of Hα emission for SN 2013ct, corresponding to ∼0.007 M of stripped/ablated companion star material (under the assumptions of the spectral modelling). This mass is significantly lower than expected for single-degenerate scenarios, suggesting that >0.1 M of H-rich is present but not observed. We do not detect Hα emission in the other 10 SNe Ia. This brings the total sample of normal SNe Ia with non-detections (<0.001–0.058 M) of H-rich material to 17 events. The simplest explanation for these non-detections is that these objects did not result from the explosion of a CO white dwarf accreting matter from a H-rich companion star via Roche lobe overflow or symbiotic channels. However, further spectral modelling is needed to confirm this. We also find no evidence of He-emission features, but models with He-rich companion stars are not available to place mass limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multigroup neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number, 〈Ma2〉, reflects the violence of aspherical motions in the gain layer, and explosive runaway occurs for 〈Ma2〉 ≳ 0.3, corresponding to a reduction of the critical neutrino luminosity by ∼25∼25 per cent compared to 1D. In the light of this theory, progenitor asphericities aid shock revival mainly by creating anisotropic mass flux on to the shock: differential infall efficiently converts velocity perturbations in the progenitor into density perturbations δρ/ρ at the shock of the order of the initial convective Mach number Maprog. The anisotropic mass flux and ram pressure deform the shock and thereby amplify post-shock turbulence. Large-scale (ℓ = 2, ℓ = 1) modes prove most conducive to shock revival, whereas small-scale perturbations require unrealistically high convective Mach numbers. Initial density perturbations in the progenitor are only of the order of Ma2progMaprog2 and therefore play a subdominant role.