964 resultados para P-FACTOR
Resumo:
The lipopolysaccharide of Salmonella and other Gram negative pathogenic species has been implicated as a major virulence determinant and in this study we report the role of LPS of S. Enteritidis in the colonisation and persistent gastrointestinal infection of young poultry. The gene encoding the unique O-antigen ligase, waaL, was mutated by insertional inactivation in a well characterised S. Enteritidis strain, S1400/94. The waaL mutant, designated PCP, produced rough colonies on agar medium, did not agglutinate O9 antiserum, did not produce an LPS ladder on silver stained gels and was serum sensitive. PCP and a nalidixic acid marked derivative of S1400/94 (S1400/94 Nal(r)) were used to orally challenge young chicks, separately and together in competitive index experiments. At post-mortem examination of 1-day-old chicks challenged S1400/94 Nal(r) and PCP separately there were no significant differences in the numbers of S1400/94 Nal(r) and PCP bacteria in tissues sampled on days 1, 2. and 5. By day 42 after challenge S1400/94 Nal(r) bacteria were recovered in significantly higher numbers than PCP from the caecal contents (P < 0.001). In competitive index studies in the 1-day-old chick PCP colonised, invaded and persisted in lower numbers than S1400/94 Nal(r). In 4-week-old chicks challenged separately, PCP bacteria were recovered from all tissues examined in significantly lower numbers than S1400/94 Nal(r). In competitive index experiments in 4-week-old chicks, PCP was not detected at any site and at any time point. Therefore, the O-antigen of S. Enteritidis plays art important role in poultry infections although this role is less important in the newly hatched chick. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.
Resumo:
Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01), suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.
Resumo:
STUDY QUESTION: How does insulin-like factor 3 (INSL3) concentration in blood vary across the menstrual cycle in women? SUMMARY ANSWER: INSL3 is secreted by the theca interna cells of growing antral follicles and is phasic in its expression. WHAT IS KNOWN ALREADY: The relaxin-like hormone INSL3 is known to be expressed in follicles of several mammal species, and was recently shown in cows to be specifically secreted into the bloodstream by growing antral follicles, corresponding to follicular waves. In males INSL3 is known to be acutely independent of the hormones of the hypothalamic-pituitary-gonadal axis, suggesting that in women INSL3 might be a novel biomarker for antral follicle recruitment and development. STUDY DESIGN, SIZE, DURATION: Two cohorts of women were studied. First, 18 healthy women of reproductive age were followed longitudinally for one and a half cycles, with blood sampling and hormone measurement every 2-3 days. A second cohort comprised a cross-sectional study of 909 women attending an infertility clinic, with a single blood sample taken at entry, together with other clinical and hormonal parameters. PARTICIPANTS/MATERIALS, SETTING, METHODS: Blood samples from both retrospective cohorts were analyzed for INSL3 using a highly sensitive time-resolved fluorescent immunoassay, and data were analyzed in comparison with other clinical and hormonal parameters. MAIN RESULT AND THE ROLE OF CHANCE: For young healthy women of reproductive age, we showed a phasic expression of INSL3 corresponding to antral follicle growth in both the follicular and luteal phases of the cycle, which was significantly (P < 0.05) elevated compared with that during menses. For women attending an infertility clinic, those with diagnosed polycystic ovarian syndrome indicated significantly (P < 0.0005) greater circulating INSL3 levels and those with low ovarian reserve showed significantly (P < 0.002) decreased INSL3 values. LIMITATIONS, REASONS FOR CAUTION: These were retrospective studies and the results were obtained from natural cycles only, with their inherent variability. WIDER IMPLICATIONS OF THE FINDINGS: We show for the first time that INSL3 in women does vary across the menstrual cycle, and appears to reflect the number of growing antral follicles recruited within both follicular and luteal phases. STUDY FUNDING/COMPETING INTEREST(S): The present retrospective study was largely supported by departmental funds. There were no competing interests.
Resumo:
AIMS/HYPOTHESIS: The PPARGC1A gene coactivates multiple nuclear transcription factors involved in cellular energy metabolism and vascular stasis. In the present study, we genotyped 35 tagging polymorphisms to capture all common PPARGC1A nucleotide sequence variations and tested for association with metabolic and cardiovascular traits in 2,101 Danish and Estonian boys and girls from the European Youth Heart Study, a multicentre school-based cross-sectional cohort study. METHODS: Fasting plasma glucose concentrations, anthropometric variables and blood pressure were measured. Habitual physical activity and aerobic fitness were objectively assessed using uniaxial accelerometry and a maximal aerobic exercise stress test on a bicycle ergometer, respectively. RESULTS: In adjusted models, nominally significant associations were observed for BMI (rs10018239, p = 0.039), waist circumference (rs7656250, p = 0.012; rs8192678 [Gly482Ser], p = 0.015; rs3755863, p = 0.02; rs10018239, beta = -0.01 cm per minor allele copy, p = 0.043), systolic blood pressure (rs2970869, p = 0.018) and fasting glucose concentrations (rs11724368, p = 0.045). Stronger associations were observed for aerobic fitness (rs7656250, p = 0.005; rs13117172, p = 0.008) and fasting glucose concentrations (rs7657071, p = 0.002). None remained significant after correcting for the number of statistical comparisons. We proceeded by testing for gene x physical activity interactions for the polymorphisms that showed nominal evidence of association in the main effect models. None of these tests was statistically significant. CONCLUSIONS/INTERPRETATION: Variants at PPARGC1A may influence several metabolic traits in this European paediatric cohort. However, variation at PPARGC1A is unlikely to have a major impact on cardiovascular or metabolic health in these children.
Resumo:
In the rodent forebrain GABAergic neurons are generated from progenitor cells that express the transcription factors Dlx1 and Dlx2. The Rap-1 guanine nucleotide exchange factor, MR-GEF, is turned on by many of these developing GABAergic neurons. Expression of both Dlx1/2 and MR-GEF is retained in both adult mouse and human forebrain where, in human, decreased Dlx1 expression has been associated with psychosis. Using in situ hybridization studies we show that MR-GEF expression is significantly down-regulated in the forebrain of Dlx1/2 double mutant mice suggesting that MR-GEF and Dlx1/2 form part of a common signalling pathway during GABAergic neuronal development. We therefore compared MR-GEF expression by in situ hybridization in individuals with major psychiatric disorders (schizophrenia, bipolar disorder, major depression) and control individuals. We observed a significant positive correlation between layers II and IV of the dorso-lateral prefrontal cortex (DLPFC) in the percentage of MR-GEF expressing neurons in individuals with bipolar disorder, but not in individuals with schizophrenia, major depressive disorder or in controls. Since MR-GEF encodes a Rap1 GEF able to activate G-protein signalling, we suggest that changes in MR-GEF expression could potentially influence neurotransmission.
Resumo:
Many in vitro systems used to examine multipotential neural progenitor cells (NPCs) rely on mitogens including fibroblast growth factor 2 (FGF2) for their continued expansion. However, FGF2 has also been shown to alter the expression of transcription factors (TFs) that determine cell fate. Here, we report that NPCs from the embryonic telencephalon grown without FGF2 retain many of their in vivo characteristics, making them a good model for investigating molecular mechanisms involved in cell fate specification and differentiation. However, exposure of cortical NPCs to FGF2 results in a profound change in the types of neurons generated, switching them from a glutamatergic to a GABAergic phenotype. This change closely correlates with the dramatic upregulation of TFs more characteristic of ventral telencephalic NPCs. In addition, exposure of cortical NPCs to FGF2 maintains their neurogenic potential in vitro, and NPCs spontaneously undergo differentiation following FGF2 withdrawal. These results highlight the importance of TFs in determining the types of neurons generated by NPCs in vitro. In addition, they show that FGF2, as well as acting as a mitogen, changes the developmental capabilities of NPCs. These findings have implications for the cell fate specification of in vitro-expanded NPCs and their ability to generate specific cell types for therapeutic applications. Disclosure of potential conflicts of interest is found at the end of this article.
Resumo:
We have performed a screen combining subtractive hybridization with PCR to isolate genes that are regulated when neuroepithelial (NE) cells differentiate into neurons. From this screen, we have isolated a number of known genes that have not previously been associated with neurogenesis, together with several novel genes. Here we report that one of these genes, encoding a guanine nucleotide exchange factor (GEF), is regulated during the differentiation of distinct neuronal populations. We have cloned both rat and mouse GEF genes and shown that they are orthologs of the human gene, MR-GEF, which encodes a GEF that specifically activates the small GTPase, Rap1. We have therefore named the rat gene rat mr-gef (rmr-gef) and the mouse gene mouse mr-gef (mmr-gef). Here, we will collectively refer to these two rodent genes as mr-gef. Expression studies show that mr-gef is expressed by young neurons of the developing rodent CNS but not by progenitor cells in the ventricular zone (VZ). The expression pattern of mr-gef during early telencephalic neurogenesis is strikingly similar to that of GABA and the LIM homeobox gene Lhx6, a transcription factor expressed by GABAergic interneurons generated in the ventral telencephalon, some of which migrate into the cortex during development. These observations suggest that mr-gef encodes a protein that is part of a signaling pathway involved in telencephalic neurogenesis; particularly in the development of GABAergic interneurons.
Resumo:
Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.
Resumo:
Background The objective was to examine the course and longitudinal associations of generalized anxiety disorder (GAD) and major depressive disorder (MDD) in mothers over the postpartum 2 years. Method Using a prospective naturalistic design, 296 mothers recruited from a large community pool were assessed for GAD and MDD at 3, 6, 10, 14, and 24 months postpartum. Structured clinical interviews were used for diagnoses, and symptoms were assessed using self-report questionnaires. Logistic regression analyses were used to examine diagnostic stability and longitudinal relations, and latent variable modeling was employed to examine change in symptoms. Results MDD without co-occurring GAD, GAD without co-occurring MDD, and co-occurring GAD and MDD, displayed significant stability during the postpartum period. Whereas MDD did not predict subsequent GAD, GAD predicted subsequent MDD (in the form of GAD + MDD). Those with GAD + MDD at 3 months postpartum were significantly less likely to be diagnosis free during the follow-up period than those in other diagnostic categories. At the symptom level, symptoms of GAD were more trait-like than those of depression. Conclusions Postpartum GAD and MDD are relatively stable conditions, and GAD is a risk factor for MDD but not vice versa. Given the tendency of MDD and GAD to be persistent, especially when comorbid, and the increased risk for MDD in mothers with GAD, as well as the potential negative effects of cumulative exposure to maternal depression and anxiety on child development, the present findings clearly highlight the need for screening and treatment of GAD in addition to MDD during the postpartum period.
Resumo:
The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and adjunctive treatment of neuropsychiatric disorders.
Resumo:
OBJECTIVE: Platelet endothelial cell adhesion molecule-1 (PECAM-1) regulates platelet response to multiple agonists. How this immunoreceptor tyrosine-based inhibitory motif-containing receptor inhibits G protein-coupled receptor-mediated thrombin-induced activation of platelets is unknown. APPROACH AND RESULTS: Here, we show that the activation of PECAM-1 inhibits fibrinogen binding to integrin αIIbβ3 and P-selectin surface expression in response to thrombin (0.1-3 U/mL) but not thrombin receptor-activating peptides SFLLRN (3×10(-7)-1×10(-5) mol/L) and GYPGQV (3×10(-6)-1×10(-4) mol/L). We hypothesized a role for PECAM-1 in reducing the tethering of thrombin to glycoprotein Ibα (GPIbα) on the platelet surface. We show that PECAM-1 signaling regulates the binding of fluorescein isothiocyanate-labeled thrombin to the platelet surface and reduces the levels of cell surface GPIbα by promoting its internalization, while concomitantly reducing the binding of platelets to von Willebrand factor under flow in vitro. PECAM-1-mediated internalization of GPIbα was reduced in the presence of both EGTA and cytochalasin D or latrunculin, but not either individually, and was reduced in mice in which tyrosines 747 and 759 of the cytoplasmic tail of β3 integrin were mutated to phenylalanine. Furthermore, PECAM-1 cross-linking led to a significant reduction in the phosphorylation of glycogen synthase kinase-3β Ser(9), but interestingly an increase in glycogen synthase kinase-3α pSer(21). PECAM-1-mediated internalization of GPIbα was reduced by inhibitors of dynamin (Dynasore) and glycogen synthase kinase-3 (CHIR99021), an effect that was enhanced in the presence of EGTA. CONCLUSIONS: PECAM-1 mediates internalization of GPIbα in platelets through dual AKT/protein kinase B/glycogen synthase kinase-3/dynamin-dependent and αIIbβ3-dependent mechanisms. These findings expand our understanding of how PECAM-1 regulates nonimmunoreceptor signaling pathways and helps to explains how PECAM-1 regulates thrombosis.
Resumo:
Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate. © 2015 Wiley Periodicals, Inc.
Resumo:
Rationale: Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective: We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results: Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem)immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions: These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome.
Resumo:
Cardiac myocyte hypertrophy is associated with an increase in expression of immediate early genes (e.g. c-jun) via activation of pre-existing transcription factors. The activity of CREB transcription factor is regulated through phosphorylation of Ser-133 by one of several protein kinases (e.g. protein kinase A (PKA), p90 ribosomal S6 kinases (RSKs) and the related kinase, MSK1). A cell-permeable form of cAMP, hypertrophic agonists (endothelin-1 (ET-1), phenylephrine (PE)) and hyperosmotic shock all promoted phosphorylation of CREB(Ser-133) in rat neonatal cardiac myocytes. The response to endothelin-1 required the extracellular signal-regulated kinase cascade which stimulates both RSKs and MSK1. Phosphorylation of CREB(Ser-133) in response to ET-1 was not associated with any increase in DNA binding to a consensus cAMP-response element (CRE). The rat c-jun promoter contains elements which may bind either c-Jun/ATF2 or CREB/ATF1 dimers. Using extracts from rat cardiac myocytes, we identified at least two complexes which bind to the most proximal of these elements, one of which contained CREB and the other c-Jun. Thus, phosphorylation and activation of CREB in cardiac myocytes may be effected by a range of different stimuli to influence the expression of immediate early genes such as c-jun.