982 resultados para P element susceptibility


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the inherent limitations of DXA, assessment of the biomechanical properties of vertebral bodies relies increasingly on CT-based finite element (FE) models, but these often use simplistic material behaviour and/or single loading cases. In this study, we applied a novel constitutive law for bone elasticity, plasticity and damage to FE models created from coarsened pQCT images of human vertebrae, and compared vertebral stiffness, strength and damage accumulation for axial compression, anterior flexion and a combination of these two cases. FE axial stiffness and strength correlated with experiments and were linearly related to flexion properties. In all loading modes, damage localised preferentially in the trabecular compartment. Damage for the combined loading was higher than cumulated damage produced by individual compression and flexion. In conclusion, this FE method predicts stiffness and strength of vertebral bodies from CT images with clinical resolution and provides insight into damage accumulation in various loading modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pacaya volcanic complex is part of the Central American volcanic arc, which is associated with the subduction of the Cocos tectonic plate under the Caribbean plate. Located 30 km south of Guatemala City, Pacaya is situated on the southern rim of the Amatitlan Caldera. It is the largest post-caldera volcano, and has been one of Central America’s most active volcanoes over the last 500 years. Between 400 and 2000 years B.P, the Pacaya volcano had experienced a huge collapse, which resulted in the formation of horseshoe-shaped scarp that is still visible. In the recent years, several smaller collapses have been associated with the activity of the volcano (in 1961 and 2010) affecting its northwestern flanks, which are likely to be induced by the local and regional stress changes. The similar orientation of dry and volcanic fissures and the distribution of new vents would likely explain the reactivation of the pre-existing stress configuration responsible for the old-collapse. This paper presents the first stability analysis of the Pacaya volcanic flank. The inputs for the geological and geotechnical models were defined based on the stratigraphical, lithological, structural data, and material properties obtained from field survey and lab tests. According to the mechanical characteristics, three lithotechnical units were defined: Lava, Lava-Breccia and Breccia-Lava. The Hoek and Brown’s failure criterion was applied for each lithotechnical unit and the rock mass friction angle, apparent cohesion, and strength and deformation characteristics were computed in a specified stress range. Further, the stability of the volcano was evaluated by two-dimensional analysis performed by Limit Equilibrium (LEM, ROCSCIENCE) and Finite Element Method (FEM, PHASE 2 7.0). The stability analysis mainly focused on the modern Pacaya volcano built inside the collapse amphitheatre of “Old Pacaya”. The volcanic instability was assessed based on the variability of safety factor using deterministic, sensitivity, and probabilistic analysis considering the gravitational instability and the effects of external forces such as magma pressure and seismicity as potential triggering mechanisms of lateral collapse. The preliminary results from the analysis provide two insights: first, the least stable sector is on the south-western flank of the volcano; second, the lowest safety factor value suggests that the edifice is stable under gravity alone, and the external triggering mechanism can represent a likely destabilizing factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dietary exposure to prion-contaminated materials has caused kuru and variant Creutzfeldt-Jakob disease in humans and transmissible spongiform encephalopathies (TSEs) in cattle, mink, and felines. The epidemiology of dietary prion infections suggests that host genetic modifiers and possibly exogenous cofactors may play a decisive role in determining disease susceptibility. However, few cofactors influencing susceptibility to prion infection have been identified. In the present study, we investigated whether colitis might represent one such cofactor. We report that moderate colitis caused by an attenuated Salmonella strain more than doubles the susceptibility of mice to oral prion infection and modestly accelerates the development of disease after prion challenge. The prion protein was up-regulated in intestines and mesenteric lymph nodes of mice with colitis, providing a possible mechanism for the effect of colitis on the pathogenesis of prion disease. Therefore, moderate intestinal inflammation at the time of prion exposure may constitute one of the elusive risk factors underlying the development of TSE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MEP1A gene, located on human chromosome 6p (mouse chromosome 17) in a susceptibility region for inflammatory bowel disease (IBD), encodes the alpha-subunit of metalloproteinase meprin A, which is expressed in the intestinal epithelium. This study shows a genetic association of MEP1A with IBD in a cohort of ulcerative colitis (UC) patients. There were four single-nucleotide polymorphisms in the coding region (P=0.0012-0.04), and one in the 3'-untranslated region (P=2 x 10(-7)) that displayed associations with UC. Moreover, meprin-alpha mRNA was decreased in inflamed mucosa of IBD patients. Meprin-alpha knockout mice exhibited a more severe intestinal injury and inflammation than their wild-type counterparts following oral administration of dextran sulfate sodium. Collectively, the data implicate MEP1A as a UC susceptibility gene and indicate that decreased meprin-alpha expression is associated with intestinal inflammation in IBD patients and in a mouse experimental model of IBD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The outer membrane protein M35 is a conserved porin of type 1 strains of the respiratory pathogen Moraxella catarrhalis. It was previously shown that M35 is involved in the uptake of essential nutrients required for bacterial growth and for nasal colonization in mice. The aim of this study was (i) to characterize the potential roles of M35 in the host-pathogen interactions considering the known multifunctionality of porins and (ii) to characterize the degree of conservation in the phylogenetic older subpopulation (type 2) of M. catarrhalis. RESULTS: Isogenic m35 mutants of the type 1 strains O35E, 300 and 415 were tested for their antimicrobial susceptibility against 15 different agents. Differences in the MIC (Minimum Inhibitory Concentration) between wild-type and mutant strains were found for eight antibiotics. For ampicillin and amoxicillin, we observed a statistically significant 2.5 to 2.9-fold MIC increase (p < 0.03) in the m35 mutants. Immunoblot analysis demonstrated that human saliva contains anti-M35 IgA. Wild-type strains and their respective m35 mutants were indistinguishable with respect to the phenotypes of autoagglutination, serum resistance, iron acquisition from human lactoferrin, adherence to and invasion of respiratory tract epithelial cells, and proinflammatory stimulation of human monocytes. DNA sequencing of m35 from the phylogenetic subpopulation type 2 strain 287 revealed 94.2% and 92.8% identity on the DNA and amino acid levels, respectively, in comparison with type 1 strains. CONCLUSION: The increase in MIC for ampicillin and amoxicillin, respectively, in the M35-deficient mutants indicates that this porin affects the outer membrane permeability for aminopenicillins in a clinically relevant manner. The presence of IgA antibodies in healthy human donors indicates that M35 is expressed in vivo and recognized as a mucosal antigen by the human host. However, immunoblot analysis of human saliva suggests the possibility of antigenic variation of immunoreactive epitopes, which warrants further analysis before M35 can be considered a potential vaccine candidate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

H-ficolin (Hakata antigen, ficolin-3) activates the lectin pathway of complement similar to mannose-binding lectin. However, its impact on susceptibility to infection is currently unknown. This study investigated whether the serum concentration of H-ficolin at diagnosis is associated with fever and neutropenia (FN) in paediatric cancer patients. H-ficolin was measured by time-resolved immunofluorometric assay in serum taken at cancer diagnosis from 94 children treated with chemotherapy. The association of FN episodes with H-ficolin serum concentration was analysed by multivariate Poisson regression. Median concentration of H-ficolin in serum was 26 mg/l (range 6-83). Seven (7%) children had low H-ficolin (< 14 mg/l). During a cumulative chemotherapy exposure time of 82 years, 177 FN episodes were recorded, 35 (20%) of them with bacteraemia. Children with low H-ficolin had a significantly increased risk to develop FN [relative risk (RR) 2.24; 95% confidence interval (CI) 1.38-3.65; P = 0.004], resulting in prolonged duration of hospitalization and of intravenous anti-microbial therapy. Bacteraemia occurred more frequently in children with low H-ficolin (RR 2.82; CI 1.02-7.76; P = 0.045). In conclusion, low concentration of H-ficolin was associated with an increased risk of FN, particularly FN with bacteraemia, in children treated with chemotherapy for cancer. Low H-ficolin thus represents a novel risk factor for chemotherapy-related infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and chronic bronchitis and is a leading cause of morbidity and mortality worldwide. Tobacco smoke and deficiency in α1-antitrypsin (AAT) are the most prominent environmental and genetic risk factors, respectively. Yet the pathogenesis of COPD is not completely elucidated. Disease progression appears to include a vicious circle driven by self-perpetuating lung inflammation, endothelial and epithelial cell death, and proteolytic degradation of extracellular matrix proteins. Like AAT, serpinB1 is a potent inhibitor of serine proteases including neutrophil elastase and cathepsin G. Because serpinB1 is expressed in myeloid and lung epithelial cells and is protective during lung infections, we investigated the role of serpinB1 in preventing age-related and cigarette smoke-induced emphysema in mice. Fifteen-month-old mice showed increased lung volume and decreased pulmonary function compared with young adult mice (3 mo old), but no differences were observed between serpinB1-deficient (KO) and wild-type (WT) mice. Chronic exposure to secondhand cigarette smoke resulted in structural emphysematous changes compared with respective control mice, but no difference in lung morphometry was observed between genotypes. Of note, the different pattern of stereological changes induced by age and cigarette smoke suggest distinct mechanisms leading to increased airway volume. Finally, expression of intracellular and extracellular protease inhibitors were differently regulated in lungs of WT and KO mice following smoke exposure; however, activity of proteases was not significantly altered. In conclusion, we showed that, although AAT and serpinB1 are similarly potent inhibitors of neutrophil proteases, serpinB1 deficiency is not associated with more severe emphysema.