942 resultados para Oxo-biodegradable additives


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies have described the benefits of nanoscience and nanotechnology (N&N) in different sectors such as agriculture, energy, environmental preservation, and public health. The rapid evolution of N&N can be shown through a panoramic analysis of scientific papers and patents. In the area of public health, it is estimated that the global market for nanotechnology products will expand to 160 billion U.S. dollars in 2015. The Brazilian government has also strengthened its innovative potential in N&N through economic subsidies, as observed for other countries. This review is focused on the current landscape of N&N in a therapeutic context, highlighting the development of nanotech-products produced with biocompatible and biodegradable materials that are already commercially available or under investigation. Most studies under investigation are focused on the development of nanotechnology-based formulations intended for treatment of cancer, inflammatory, cardiovascular, and neurological diseases. Although there are several advantages of N&N in healthcare, many challenges have to be conquered to increase the availability of nanotechnology products in toxicological, preclinical and clinical studies, scale-up, regulatory, and private investments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new flavonoid, catechin-3-O-(3"-O-trans-cinnamoyl)-α-rhamnopyranoside, along with known compounds, catechin-3-O-α-rhamnopyranoside, 3-oxo-urs-12-en-28-oic acid, 2,4,6-trimethoxybenzoic acid, 2-butyl-D-fructofuranoside and 1-butyl-D-fructofuranoside, has been isolated from the stem bark of V. thyrsoidea. These compounds were assayed for inhibition of protease activity (cathepsins B and K) and against cancer cell lines. Catechin-3-O-(3"-O-trans-cinnamoyl)-α-rhamnopyranoside showed moderate inhibitory activity (IC50 = 62.02 µM) against cathepsin B while 2-butyl-D-fructofuranoside was the most potent against a strain of CNS (SF-295) and human leukemia (HL-60) with IC50 = 36.80 µM and IC50 = 25.37 µM, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass gasification is a technology that has attracted great interest in synthesis of biofuels and oxo alcohols. However, this gas contains several contaminants, including tar, which need to be removed. Removal of tar is particularly critical because it can lead to operational problems. This review discusses the major pathways to remove tar, with a particular focus on the catalytic steam reforming of tar. Few catalysts have shown promising results; however, long-term studies in the context of real biomass gasification streams are required to realize their potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flumequine degradation by electrochemical and photo-electrochemical processes was evaluated in this study. The antimicrobial activity of the solutions subjected to the electrochemical processes was monitored during the assays. The experiments were carried out using DSA® (dimensionally stable anode) electrode. The influence of current density was investigated for the 7.5 to 45 mA cm-2 range. The photo-electrochemical process was more efficient for degrading flumequine (85%) and reducing solution antimicrobial activity. For both processes, the residual antimicrobial activity decreased as flumequine degradation increased. The reaction intermediate m/z 244 (5-methyl-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid) was identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposite materials have been incorporated into biopolymers, (e.g. hydroxypropyl methylcellulose), to improve their physical and chemical properties and enable them to be applied in food packaging, especially for their biodegradable and renewable properties. With this addition, fruit puree has been incorporated into the films to confer nutritional properties besides color and flavor. Chitosan is of interest in the packaging field since it is a biodegradable, bioabsorbable, antimicrobial agent. Furthermore, chitosan nanoparticles have been widely explored for their interesting properties and potential applications in food packaging. This work was divided into two stages: (1) chitosan nanoparticle synthesis; (2) addition of nanoparticles into HPMC and papaya puree films. Addition of chitosan nanoparticles to HPMC and papaya puree films improved film properties: mechanical, thermal and water vapor barrier. We have developed a novel nanomaterial with great potential for application in packaging to prolong the shelf life of food.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims to prepare biodegradable films from cassava starch, poly (butylene adipate-co-terephthalate) (PBAT), and montmorillonite (MMT) using blow-extrusion process and analyze the effects of different types and concentrations of MMT on the microstructure, physicochemical, and mechanical properties of the resulting films. The films were produced by blending 30% of PBAT with glycerol (17.5%), starch (49.0-52.5%), and four different types of montmorillonite (Cloisite® Na+, 10A, 15A, and 30B) at two different concentrations (1.75% and 3.5%). All the films prepared in this study showed an increase in the basal spacing of MMT layers. In particular, the films with 10A and 30B showed the highest increase in intercalation basal spacing, suggesting the formation of intercalated composites. The addition of nanoclays decreased the elongation of films. The addition of Cloisite® 10A resulted in films with the lowest WVP values and the highest stability to water adsorption under different RH conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the production of polyhydroxyalkanoates (PHAs) by fermentation of Crude Glycerin, a byproduct of the biodiesel industry, by Cupriavidus necator IPT 026, 027 and 028. The influence of fermentation time and temperature in shake flasks were evaluated. The highest PHA production (2.82 g L-1) occurred at 35 ºC for 72 h of fermentation. The melting and initial thermal degradation temperatures of this PHA were 177.9 ºC and 306.33 ºC, respectively, with 55% crystallinity. FTIR spectrum was similar to those reported in literature. The polymer obtained presented three different methyl esters of hydroxyalkanoates in its composition, with molecular weight of 630 kDa. Bacteria can use Crude Glycerin as an inexpensive substrate to produce value-added biodegradable products, such as PHA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review reports the preparation and characterization of bionanocomposites based on biodegradable polymers reinforced with cellulose nanocrystals (CNC) described in the literature. The outstanding potential of cellulose nanocrystals as reinforcement fillers of biodegradable polymers is presented with an emphasis on the solution casting process, which is an appropriate method to investigate the physico-chemical effects of the incorporation of CNC into the polymeric matrices. Besides solution casting, other small scale methods such as electrospinning and layer-by-layer are also covered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work shows the application of ¹H NMR spectroscopy and chemometrics for quality control of grape juice. A wide range of quality assurance parameters were assessed by single ¹H NMR experiments acquired directly from juice. The investigation revealed that conditions and time of storage should be revised and indicated on all labels. The sterilization process of homemade grape juices was efficient, making it possible to store them for long periods without additives. Furthermore, chemometric analysis classified the best commercial grape juices to be similar to homemade grape juices, indicating that this approach can be used to determine the authenticity after adulteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodegradable polyurethanes (PUR) were prepared from polyols derived from castor oil by transesterification of pentaerythritol-modified castor oil and lysine polyisocyanates (LDI and LTI). The polyurethanes obtained were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA). The mechanical behavior of the polyurethanes was measured by Shore A hardness and tensile testing (stress-strain curves). The biodegradable nature of the material was determined by contact angle, water absorption tests, and in vitro degradation in PBS solution. This study aims to examine the effect of the structure and functionality of diisocyanate on the mechanical properties and in vitro degradation of the material. The results were compared with homologous materials obtained from isophorone diisocyanate (IPDI) used in previous works. The objective was to evaluate candidate materials that can be potentially used in tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phytochemical study on the aerial parts of Wissadula periplocifolia using chromatographic techniques has led to the isolation of sitosterol (1a), stigmasterol (1b), sitosterol 3-O-β-D-glucopyranoside (2a), stigmasterol 3-O-β-D-glucopyranoside (2b), phaeophytin A (3), 13²-hydroxy-(13²-S)-phaeophytin A (4), phaeophytin B (5), 17³-ethoxyphaeophorbide (6), 3,4-seco-urs-4(23),20(30)-dien-3-oic acid (7), 3-oxo-21β-H-hop-22(29)-ene (8), dammaradienone (9a), and taraxastenone (9b). The isolated compounds were characterised by spectroscopic analysis. A preliminary assay to evaluate the antibacterial activity of W. periplocifolia extracts and fractions showed that the dichloromethane, ethyl acetate, and n-butanol fractions were active against Enterococcus faecalis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to (1) produce and characterize the flour obtained from two varieties of canihua, cupi and illpa-inia, and (2) evaluate the ability of these flours to form biofilms. The flours produced contain proteins, starches, lipids, organic substances containing phenol groups, and high percentages of unsaturated fatty acids. Films produced from the illpa variety presented lower water vapor permeability and larger Young’s modulus values than the films formed from the cupi variety. Both films were yellowish and displayed a high light blocking ability (as compared with polyethylene films), which can be attributed to the presence of phenolic compounds. Furthermore, they showed lesser solubility and water permeability than other polysaccharide films, which may be the result of the higher protein (12%–13.8%) and lipid (11%) contents in canihua flours, as well as the formation of a larger number of S–S bonds. On the other hand, these films presented a single vitreous transition temperature at low temperatures (< 0 °C), crystallization of the A and Vh types, and an additional diffraction peak at 2 = 7.5º, ascribed to the presence of essential fatty acids in canihua flour. Canihua flour can form films with adequate properties and shows promise for potential applications in food packaging, because it acts as a good barrier to incident ultraviolet light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental impact of plastic waste has attracted worldwide attention. Amid the current context of increasing concern for the environment, biodegradable plastics have been widely studied as a replacement for synthetic plastics. Poly(3-hydroxybutyrate) (P(3HB)) is a biopolymer stored as an intracellular energy and reserve source in many microorganisms. Because it is an intracellular product, P(3HB) must be extracted from the cells at the end of the culture. The purpose of this study was to investigate the effect of extraction time, heating temperature, first standing time (after filtration and extraction), second standing time (after P(3HB) precipitation) and solvent amount, during the process of extracting P(3HB) from Cupriavidus necator DSM 545, using propylene carbonate as solvent. The extraction kinetic of P(3HB) with propylene carbonate from thermally treated biomass was evaluated at different temperatures. The physical properties of the P(3HB) obtained were also evaluated. In this case, P(3HB) obtained at optimal conditions of recovery (98%) and purity (99%) was used. Results showed that temperature was the most important factor in these responses for the range of values studied (110-150 ºC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phytochemical study of hexane extract from leaves of Salacia crassifolia resulted in the isolation of 3β-palmitoxy-urs-12-ene, 3-oxofriedelane, 3β-hydroxyfriedelane, 3-oxo-28-hydroxyfriedelane, 3-oxo-29-hydroxyfriedelane, 28,29-dihydroxyfriedelan-3-one, 3,4-seco-friedelan-3-oic acid, 3β-hydroxy-olean-9(11):12-diene and the mixture of α-amirin and β-amirin. β-sitosterol, the polymer gutta-percha, squalene and eicosanoic acid were also isolated. The chemical structures of these constituents were established by IR, 1H and 13C NMR spectral data. Crude extracts and the triterpenes were tested against Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis and no activity was observed under the in vitro assay conditions. The hexane, chloroform, ethyl acetate and ethanol crude extracts, and the constituent 3,4-seco-friedelan-3-oic acid and 28,29-dihydroxyfriedelan-3-one showed in vitro antimicrobial activity against Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Streptococcus sanguinis and Candida albicans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzyme-support strategies are increasingly replacing conventional chemical methods in both laboratories and industries with attributes including efficiency, higher performance and multifarious use, where silica surfaces show potential due to the chemical bonds based on the presence of hydroxyl groups which can be modified with different additives. Surface-modified silica is a novel class of materials capable of improving enzyme stability and reusability that can be applied to support several immobilization techniques. This review describes the use of innovative modified supports to improve the state of enzyme immobilization and provide the industrial sector with new perspectives.